LEARNING OBJECTIVES

.: Understand the basic concepts of MSS modeling
.: Describe how MSS models interact with data and the user ...
Understand the different model classes
.: Understand how to structure decision-making of a few alternatives
.: Describe how spreadsheets can be used for MSS modeling and solution
.: Explain what optimization, simulation, and heuristics are, and when and how to use them ...
Describe how to structure a linear programming model
.: Become familiar with some capabilities of linear programming and simulation packages ...
Understand how search methods are used to solve MSS models
.: Explain the differences between algorithms, blind search, and heuristics ...
Describe how to handle multiple goals
.: Explain what is meant by sensitivity, automatic, what-if analysis, and goal seeking ...
Describe the key issues of model management

In this chapter, we describe the model base and its management, one of the major components of DSS. We present this material with a note of caution: modeling can be a very difficult topic and is as much an art as a science. The purpose of this chapter is not necessarily for the reader to master the topics of modeling and analysis. Rather, the material is geared toward gaining familiarity with the important concepts as they relate to business intelligence/DSS. We walk through some basic concepts and definitions of modeling before introducing the influence diagram, which can aid a decision-maker in sketching a model of a situation and even solving it. We next introduce the idea of modeling directly in spreadsheets. Only then do we describe the structure of some successful time-proven models and methodologies: decision analysis, decision trees, optimization, search methods, heuristic programming, and simulation. We next touch on some recent developments in modeling tools and techniques and conclude with some important issues in model-base management. We defer our discussion on the database and its management until the next chapter. We have found that it is necessary to understand models and their use before attempting to learn how to utilize data warehouses, OLAP, and data mining effectively.
The chapter is organized as follows:

4.1 Opening Vignette: DuPont Simulates Rail Transportation System and Avoids Costly Capital Expense
4.2 MSS Modeling
4.3 Static and Dynamic Models
4.4 Certainty, Uncertainty, and Risk
4.5 Influence Diagrams
4.6 MSS Modeling with Spreadsheets
4.7 Decision Analysis of a Few Alternatives (Decision Tables and Decision Trees)
4.8 The Structure of MSS Mathematical Models
4.9 Mathematical Programming Optimization
4.10 Multiple Goals, Sensitivity Analysis, What-If, and Goal Seeking
4.11 Problem-Solving Search Methods
4.12 Heuristic Programming
4.13 Simulation
4.14 Visual Interactive Modeling and Visual Interactive Simulation
4.15 Quantitative Software Packages
4.16 Model Base Management

4.1 OPENING VIGNETTE: DUPONT SIMULATES RAIL TRANSPORTATION SYSTEM AND AVOIDS COSTLY CAPITAL EXPENSE

DuPont used simulation to avoid costly capital expenditures for rail car fleets as customer demands changed. Demand changes could involve rail car purchases, better management of the existing fleet, or possibly fleet size reduction. The old analysis method, past experience, and conventional wisdom led managers to feel that the fleet size should be increased. The real problem was that DuPont was not using its specialized rail cars efficiently or effectively, not that there were not enough of them. There was immense variability in production output and transit cycle time, maintenance scheduling, and order sequencing. This made it difficult, if not impossible, to handle all the factors in a cohesive and useful manner leading to a good decision.

The fleets of specialized rail cars are used to transport bulk chemicals from DuPont to manufacturers. The cost of a rail car can vary from $80,000 for a standard tank car to more than $250,000 for a specialized tanker. Because of the high capital expense, effective and efficient use of the existing fleet is a must.

Instead of simply purchasing more rail cars, DuPont developed a ProModel simulation model (ProModel Corporation, Orem, Utah, www.promodel.com) that represented the firm's entire transportation system. It accurately modeled the variability inherent in chemical production, tank car availability, transportation time, loading and unloading time, and customer demand. A simulation model can provide a virtual environment in which experimentation with various policies that affect the physical transportation system can be performed before real changes are made. Changes can be made quickly and inexpensively in a simulated world because relationships among the components of the system are represented mathematically. It is not necessary to purchase expensive rail cars to determine the effect.

ProModel allowed the company to construct simulation models easily and quickly (the first one took just two weeks to develop) and to conduct what-if analyses. It also included extensive graphics and animation capabilities. The simulation involved the entire rail transportation system. Many scenarios were developed, and experiments were run. DuPont experimented with a number of conditions and scheduling policies. Development of the simulation model helped the decision-making team understand the entire problem (see Banks et al.; 2001; Evans and Olson, 2002; Harrell et al., 2000; Law et al., 2000; Ross, 2003; Seila, Tadikamalla, and Ceric, 2003). The ProModel simulation accurately represented the variability associated with production, availability of tank cars, transportation times, and unloading at the customer site.

With the model, the entire national distribution system can be displayed graphically (visual simulation) under a variety of conditions—especially the current ones and forecasted customer demand. The simulation model helped decision-makers identify bottlenecks and other problems in the real system. By experimenting with the simulation model, the real issues were easily identified. The results convinced decision-makers that a capital expense was unjustified. In fact, the needed customer deliveries could still be made after downsizing the fleet. Simulation drove this point home hard. After only two weeks of analysis, DuPont saved $500,000 in capital investment that year.

Following the proven success of this simulation model, DuPont has started performing logistics modeling on a variety of product lines, crossing division boundaries and political domains. Simulation dramatically improved DuPont’s logistics. The next step focused on international logistics and logistics support for new market development. Savings in these areas can be substantially higher.

.:. QUESTIONS FOR THE OPENING VIGNETTE

1. Why did the decision-makers initially feel that fleet expansion was the right decision?

2. How do you think the decision-makers learned about the real system through model development? As a consequence, were they able to focus better on the structure of the real system? Do you think their involvement in model building helped them in accepting the results? Why or why not?

3. Explain how simulation was used to evaluate the operation of the rail system before the changes were actually made.

4. How could the time compression capability of simulation help in this situation?

5. Simulation does not necessarily guarantee that an analyst will find the best solution. Comment on what this might mean to DuPont.

6. Once the system indicated that downsizing was a viable alternative, why do you think the managers bought into the system? Do you think that this is why the development team continues to work on other logistics problems? Explain.

4.2 MSS MODELING

The opening vignette illustrates a complex decision-making problem for which conventional wisdom dictated an inferior decision alternative. By accurately modeling the rail transportation system, decision-makers were able to experiment with different policies and alternatives quickly and inexpensively. Simulation was the modeling approach used. The DuPont simulation model was implemented with commercial soft-
ware, which is typical. The simulation approach saves DuPont a substantial amount of money annually. Instead of investing in expensive rail cars and then experimenting with how best to use them (also quite expensive), all the work was performed on a computer, initially in two weeks. Before the first flight to the moon, the National Aeronautics and Space Administration (NASA) performed countless simulations. NASA still simulates space shuttle missions. General Motors now simulates all aspects of new car development and testing (see Gallagher, 2002; Gareiss, 2002; Witzerman, 2001). And Pratt & Whitney uses a simulated (virtual reality) environment in designing and testing engines for jet fighters (Marchant, 2002). It is extremely easy to change a model of a physical system's operation with computer simulation.

The DuPont simulation model was used to learn about the problem at hand, not necessarily to derive new alternative solutions. The alternative solutions were known, but were untested until the simulation model was developed and tested. Some other examples of simulation are given by Van der Heijden et al. (2002) and Rossetti and Selandar (2001). Van der Heijden et al. (2002) used an object-oriented simulation to design an automated underground freight transportation system at Schiphol Airport (Amsterdam). Rossetti and Selandar (2001) developed a simulation model that compared using human couriers to robots in a university hospital. The simulation showed that the hospital could save over $200,000 annually by using the robots. Simulation models can enhance an organization's decision-making process and enable it to see the impact of its future choices. For example, Fiat saves $1 million annually in manufacturing costs through simulation. The 2002 Winter Olympics (Salt Lake City, Utah) used simulation to design security systems and bus transportation for most of the venues. The predictive technology enabled the Salt Lake Organizing Committee to model and test a variety of scenarios, including security operations, weather, and transportation system design. Its their highly variable and complex vehicle-distribution network. Savings were over $20 million per year. Benefits included lower costs and improved customer service. (See promodel.com for details.)

Modeling is a key element in most DSS/business intelligence (also business analytics) and a necessity in a model-based DSS. There are many classes of models, and there are often many specialized techniques for solving each one. Simulation is a common modeling approach, but there are several others. For example, consider the optimization approach taken by Procter and Gamble (P&G) in redesigning its distribution system (Web Chapter). P&G's DSS for its North America supply chain redesign includes several models:

- A generating model (based on an algorithm) to make transportation cost estimates. This model is programmed directly in the DSS.
- A demand forecasting model (statistically based).
- A distribution center location model. This model uses aggregated data (a special modeling technique) and is solved with a standard linear/integer optimization package.
- A transportation model (specialization of a linear programming model) to determine the best shipping from product sources to distribution centers (fed to it from the previous model) and hence to customers. It is solved using commercial software and is loosely integrated with the distribution location model. These two problems are solved sequentially. The DSS must interface with commercial software and integrate the models.
- A financial and risk simulation model that takes into consideration some qualitative factors that require important human judgment.
- A geographic information system (effectively a graphical model of the data) for a user interface.
The Procter & Gamble situation demonstrates that a DSS can be composed of several models, some standard and some custom built, used collectively to support strategic decisions in the company. It further demonstrates that some models are built directly in the DSS software development package, some need to be constructed externally to the DSS software, and others can be accessed by the DSS when needed. Sometimes a massive effort is necessary to assemble or estimate reasonable model data (about 500 P&G employees were involved over the course of about a year), that the models must be integrated, that models may be decomposed and simplified, that sometimes a suboptimization approach is appropriate, and finally, that human judgment is an important aspect of using models in decision-making.

As is evident from the P&G situation and the IMERYS situation described in Case Application 4.1, modeling is not a simple task [also see Stojkovic and Soumis (2001), who developed a model for scheduling airline flights and pilots; Gabriel, Kydes and Whitman (2001), who model the U.S. national energy-economic situation; and Teradata (2003), which describes how Burlington Northern Santa Fe Corporation optimizes rail car performance through mathematical (quantitative) models embedded in its OLAP tool]. The model builder must balance the model's simplification and representation requirements so that it will capture enough of reality to make it useful for the decisionmaker.

Applying models to real-world situations can save millions of dollars, or generate millions of dollars in revenue. At American Airlines (AMR, Corp.), models were used extensively in SABRE through the American Airlines Decision Technologies (AADT) Corp. AADT pioneered many new techniques and their application, especially that of revenue management. For example, optimizing the altitude ascent and descent profile for its planes saved several million dollars per week in fuel costs. AADT saved hundreds of millions of dollars annually in the early 1980s, and eventually its incremental revenues exceeded $1 billion annually, exceeding the revenue of the airline itself (see Horner, 2000; Mukherjee, 2001; Smith et al., 2001; DSS in Action 4.1). Trick (2002) describes how Continental Airlines was able to recover from the 9/11 disaster by using a system developed for snowstorm recovery. This system was instrumental in saving millions of dollars.

Source: Adapted from Mukherjee (2001).

DSS IN ACTION 4.1

United Airlines is in the process of creating a new generation of model-based DSS tools for planning, scheduling, and operations. United plans a major integration effort to determine the optimal schedule that can be designed and managed to maximize profitability. The key to integration and collaboration is a Web-based system called IPLAN that provides a platform for planners, schedulers, and other analysts across the airline to collaborate during the decision support process. It uses a suite of decision support tools:

1. SIMON optimally designs a flight network and fleet assignment simultaneously.
2. ARM uses neighborhood search techniques for optimal multi-objective fleet assignment.
3. AIRS 1M uses advanced statistical tools to predict airline reliability.
4. SKYPATH performs optimal flight planning for minimizing fuel burn on flights.
5. CHRONOS enables dynamic multi-objective operations management.

Source: Adapted from Mukherjee (2001).
Some major modeling issues include problem identification and environmental analysis, variable identification, forecasting, the use of multiple models, model categories (or appropriate selection), model management, and knowledge-based modeling.

IDENTIFICATION OF THE PROBLEM AND ENVIRONMENTAL ANALYSIS

This issue was discussed in Chapter 2. One very important aspect is environmental scanning and analysis, which is the monitoring, scanning, and interpretation of collected information. No decision is made in a vacuum. It is important to analyze the scope of the domain and the forces and dynamics of the environment. One should identify the organizational culture and the corporate decision-making processes (who makes decisions, degree of centralization, and so on). It is entirely possible that environmental factors have created the current problem. Business intelligence (business analytics) tools can help identify problems by scanning for them (see Hall, 2002a, 2000b; Whiting, 2003; the MSS Running Case in DSS in Action 2.6; and DSS in Action 3.6, where we describe how Netflix.com creates usable environmental information for moviegoers). The problem must be understood, and everyone involved should share the same frame of understanding because the problem will ultimately be represented by the model in one form or another (as was done in the opening vignette). Otherwise, the model will not help the decision-maker.

VARIABLE IDENTIFICATION

Identification of the model’s variables (decision, result, uncontrollable, etc.) is critical, as are their relationships. Influence diagrams, which are graphical models of mathematical models, can facilitate this process. A more general form of an influence diagram, a cognitive map, can help a decision-maker to develop a better understanding of the problem, especially of variables and their interactions.

FORECASTING

Forecasting is essential for construction and manipulation of models because when a decision is implemented, the results usually occur in the future. DSS are typically designed to determine what will be, rather than as traditional MIS, which report what is or what was (Chapter 3). There is no point in running a what-if analysis (sensitivity) on the past because decisions made then have no impact on the future. In Case Application 4.1, the IMERYS clay processing model is "demand-driven." Clay demands are forecasted so that decisions about clay production that affect the future can be made. Forecasting is getting "easier" as software vendors automate many of the complications of developing such models. For example, SAS has a High Performance Forecasting system that incorporates its predictive analytics technology, ideally for retailers. This software is more automated than most forecasting packages.

E-commerce has created an immense need for forecasting and an abundance of available information for performing it. E-commerce activities occur quickly, yet information about purchases is gathered and should be analyzed to produce forecasts. Part of the analysis involves simply predicting demand; but product life-cycle needs and information about the marketplace and consumers can be utilized by forecasting models to analyze the entire situation, ideally leading to additional sales of products and services (see Gung, Leung, Lin, and Tsai, 2002).

Hamey (2003) describes how firms attempt to predict who their best (i.e., most profitable) customers are and focus in on identifying products and services that will
appeal to them. Part of this effort involves identifying lifelong customer profitability. These are important aspects of how customer relationship management and revenue-management systems work.

Further details on forecasting can be found in a Web Chapter (prenhall.com/turban). Also see Faigle, Kern, and Still (2002).

MULTIPLE MODELS

A decision support system can include several models (sometimes dozens), each of which represents a different part of the decision-making problem. For example, the Procter & Gamble supply chain DSS includes a location model to locate distribution centers, a product-strategy model, a demand forecasting model, a cost generation model, a financial and risk simulation model, and even a GIS model. Some of the models are standard and built into DSS development generators and tools. Others are standard but are not available as built-in functions. Instead, they are available as freestanding software that can interface with a DSS. Nonstandard models must be constructed from scratch. The P&G models were integrated by the DSS, and the problem had multiple goals. Even though cost minimization was the stated goal, there were other goals, as is shown by the way the managers took political and other criteria into consideration when examining solutions before making a final decision. Sodhi and Aichlmayr (2001) indicate how Web-based tools can be readily applied to integrating and accessing supply chain models for true supply chain optimization. Also see DSS in Action 4.1 for how United Airlines is integrating its models into a major DSS tool.

MODEL CATEGORIES

Table 4.1 classifies DSS models into seven groups and lists several representative techniques for each category. Each technique can be applied to either a static or a dynamic model (Section 4.3), which can be constructed under assumed environments of certainty, uncertainty, or risk (Section 4.4). To expedite model construction, one can use special decision analysis systems that have modeling languages and capabilities embedded in them. These include fourth-generation languages (formerly financial planning languages) such as Cognos PowerHouse.

MODEL MANAGEMENT

Models, like data, must be managed to maintain their integrity and thus their applicability. Such management is done with the aid of model base management systems (Section 4.16).

KNOWLEDGE-BASED MODELING

DSS uses mostly quantitative models, whereas expert systems use qualitative, knowledge-based models in their applications. Some knowledge is necessary to construct solvable (and therefore usable) models. We defer the description of knowledge-based models until later chapters.

CURRENT TRENDS

There is a trend toward making MSS models completely transparent to the decisionmaker. In multidimensional modeling and some other cases, data are generally shown in a spreadsheet format (Sections 4.6 and 4.15), with which most decision-makers are familiar. Many decision-makers accustomed to slicing and dicing data cubes are now

<table>
<thead>
<tr>
<th>Category</th>
<th>Process and Objective</th>
<th>Representative Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization of problems with few alternatives (Section 5.7)</td>
<td>Find the best solution from a small number of alternatives</td>
<td>Decision tables, decision trees</td>
</tr>
<tr>
<td>Optimization via algorithm (Section 5.8 and 5.9)</td>
<td>Find the best solution from a large or an infinite number of alternatives using a step-by-step improvement process</td>
<td>Linear and other mathematical programming models, network models</td>
</tr>
<tr>
<td>Optimization via an analytic formula (Section 5.9)</td>
<td>Find the best solution in one step using a formula</td>
<td>Some inventory models</td>
</tr>
<tr>
<td>Simulation (Sections 5.12 and 5.14)</td>
<td>Finding a good enough solution or the best among the alternatives checked using experimentation</td>
<td>Several types of simulation</td>
</tr>
<tr>
<td>Heuristics (Section 5.12)</td>
<td>Find a good enough solution using rules</td>
<td>Heuristic programming, expert systems Forecasting models, Markov analysis</td>
</tr>
<tr>
<td>Predictive models (Web Chapter)</td>
<td>Predict the future for a given scenario</td>
<td>Financial modeling, waiting lines</td>
</tr>
<tr>
<td>Other models</td>
<td>Solve a what-if case using a formula</td>
<td></td>
</tr>
</tbody>
</table>

using online analytical processing (OLAP) systems that access data warehouses (see the next chapter). Although these methods may make modeling palatable, they also eliminate many important and applicable model classes from consideration, and they eliminate some important and subtle solution interpretation aspects. Modeling involves much more than just data analysis with trend lines and establishing relationships with statistical methods. This subset of methods does not capture the richness of modeling, some of which we touch on next, in several Web Chapters, and in Case Application 4.1.

4.3 STATIC AND DYNAMIC MODELS

DSS models can be classified as static or dynamic.

STATIC ANALYSIS

Static models take a single snapshot of a situation. During this snapshot everything occurs in a single interval. For example, a decision on whether to make or buy a product is static in nature (see the Web Chapter on Scott Housing's decision-making situation). A quarterly or annual income statement is static, and so is the investment decision example in Section 4.7. The IMERYS decision-making problem in Case Application 4.1 is also static. Though it represents a year's operations, it occurs in a fixed time frame. The time frame can be "rolled" forward, but it is nonetheless static. The same is true for the P&G decision-making problem (Web Chapter). In the latter case, however, the impacts of the decisions may last over several decades. Most static decision-making situations are presumed to repeat with identical conditions (as in the BMI linear programming model described later). For example,
process simulation begins with *steady-state*, which models a static representation of a plant to find its optimal operating parameters. A static representation assumes that the flow of materials into the plant will be continuous and unvarying. Steady-state simulation is the main tool for process design, when engineers must determine the best trade-off between capital costs, operational costs, process performance, product quality, environmental and safety factors. (Boswell, 1999)

The stability of the relevant data is assumed in a static analysis.

DYNAMIC ANALYSIS

There are stories about model builders who spend months developing a complex, ultra-large-scale, hard-to-solve static model representing a week’s worth of a real-world decision-making situation like sausage production. They deliver the system and present the results to the company president, who responds, “Great! Well, that handles one week. Let’s get started on developing the 52-week model.”

Dynamic models represent scenarios that change over time. A simple example is a 5-year profit-and-loss projection in which the input data, such as costs, prices, and quantities, change from year to year.

Dynamic models are *time-dependent*. For example, in determining how many checkout points should be open in a supermarket, one must take the time of day into consideration, because different numbers of customers arrive during each hour. Demands must be forecasted over time. The IMERYS model can be expanded to include multiple time periods by including inventory at the holding tanks, warehouses, and mines. Dynamic simulation, in contrast to steady-state simulation, represents what happens when conditions vary from the steady state over time. There might be variations in the raw materials (e.g., clay) or an unforeseen (even random) incident in some of the processes. This methodology is used in plant control design (Boswell, 1999).

Dynamic models are important because they use, represent, or generate trends and patterns over time. They also show averages per period, moving averages, and comparative analyses (e.g., profit this quarter against profit in the same quarter of last year). Furthermore, once a static model is constructed to describe a given situation—say, product distribution can be expanded to represent the dynamic nature of the problem (e.g., IMERYS). For example, the transportation model (a type of network flow model) describes a static model of product distribution. It can be expanded to a dynamic network flow model to accommodate inventory and backordering (Aronson, 1989). Given a static model describing one month of a situation, expanding it to 12 months is conceptually easy. However, this expansion typically increases the model’s complexity dramatically and makes it harder, if not impossible, to solve. Also see Xiang and Poh (2002).

Part of Simon’s decision-making process described in Chapter 2 involves evaluating and comparing alternatives, during which it is necessary to predict the future outcome of each proposed alternative. Decision situations are often classified on the basis of

2 Thanks to Dick Barr of Southern Methodist University, Dallas, Texas, for this one.

3 Parts of Sections 4.4, 4.5, and 4.9, 4.12, and 4.13 were adapted from Turban and Meredith (1994).
what the decision-maker knows (or believes) about the forecasted results. Customary, we classify this knowledge into three categories (Figure 4.1), ranging from complete knowledge to total ignorance. These categories are

- Certainty
- Risk
- Uncertainty

When we develop models, any of these conditions can occur, and different kinds of models are appropriate for each case. We discuss both the basic definitions of these terms and some important modeling issues for each condition.

DECISION-MAKING UNDER CERTAINTY

In decision-making under certainty, it is *assumed* that complete knowledge is available so that the decision-maker knows exactly what the outcome of each course of action will be (as in a deterministic environment). It may not be true that the outcomes are 100 percent known, nor is it necessary to really evaluate all the outcomes, but often this assumption simplifies the model and makes it tractable. The decision-maker is viewed as a perfect predictor of the future because it is assumed that there is only one outcome for each alternative. For example, the alternative of investing in U.S. Treasury bills is one for which there is complete availability of information about the future return on the investment. Such a situation occurs most often with structured problems with short time horizons (up to 1 year). Another example is that every time you park downtown, you get a parking ticket because you exceed the time limit on the parking meter although once it did not happen. This situation can still be treated as one of decision-making under certainty. Some problems under certainty are not structured enough to be approached by analytical methods and models; they require a DSS approach.

Certainty models are relatively easy to develop and solve, and can yield optimal solutions. Many financial models are constructed under assumed certainty, even though the market is anything but 100 percent certain. Problems that have an infinite (or a very large) number of feasible solutions are extremely important and are discussed in Sections 4.9 and 4.12.

DECISION-MAKING UNDER UNCERTAINTY

In decision-making under uncertainty, the decision-maker considers situations in which several outcomes are possible for each course of action. In contrast to the risk situation, in this case the decision-maker does not know, or cannot estimate, the proba-
PART II DECISION SUPPORT SYSTEMS

bility of occurrence of the possible outcomes. Decision-making under uncertainty is more difficult because of insufficient information. Modeling of such situations involves assessment of the decision-maker's (or the organization's) attitude toward risk (see Nielsen, 2003).

Managers attempt to avoid uncertainty as much as possible, even to the point of assuming it away. Instead of dealing with uncertainty, they attempt to obtain more information so that the problem can be treated under certainty (because it can be "almost" certain) or under calculated (assumed) risk. If more information is not available, the problem must be treated under a condition of uncertainty, which is less definitive than the other categories.

DECISION-MAKING UNDER RISK (RISK ANALYSIS)

A decision made under risk” (also known as a probabilistic or stochastic decisionmaking situation) is one in which the decision-maker must consider several possible outcomes for each alternative, each with a given probability of occurrence. The long-run probabilities that the given outcomes will occur are assumed to be known or can be estimated. Under these assumptions, the decision-maker can assess the degree of risk associated with each alternative (called calculated risk). Most major business decisions are made under assumed risk. Risk analysis can be performed by calculating the expected value of each alternative and selecting the one with the best expected value. Several techniques can be used to deal with risk analysis (see Drummond, 2001; Koller, 2000; Laporte, Louveeaux, and Van Hamme, 2002). They are discussed in Sections 4.7 and 4.13.

Once a decision-making problem is understood and defined, it must be analyzed. This can best be done by constructing a model. Just as a flowchart is a graphical representation of computer program flow, an influence diagram is a map of a model (effectively a model of a model). An influence diagram is a graphical representation of a model used to assist in model design, development, and understanding. An influence diagram provides visual communication to the model builder or development team. It also serves as a framework for documenting and visualizing the relationships of the MSS model, thus assisting a modeler in focusing on the model's major aspects, and can help eliminate the less important from consideration. The term influence refers to the dependency of a variable on the level of another variable. Influence diagrams appear in several formats. The following description has evolved into a standard format (see the Decision Analysis Society Web site, faculty.fuqua.duke.edu/daweb/dasw6.htm; the Hugin Expert A/S (Aalborg, Denmark) Web site, developer.hugin.com/tutorials/index.htm; and the Lumina Decision Systems (Los Gatos, California) Web site, www.lumina.com/software/influence_diagrams.html):

40. definitions of the terms risk and uncertainty were formulated by F. H. Knight of the University of Chicago in 1933. There are other, comparable definitions in use.
The variables are connected with arrows that indicate the direction of influence (relationship). The shape of the arrow also indicates the type of relationship. The following are typical relationships:

- Certainty

- Uncertainty

- Random (risk) variable: place a tilde (~) above the variable’s name.

- Preference (usually between outcome variables): a double-line arrow ~.
- Arrows can be one-way or two-way (bidirectional), depending on the direction of influence of a pair of variables.

Influence diagrams can be constructed with any degree of detail and sophistication. This enables the model builder to map all the variables and show all the relationships in the model, as well as the direction of the influence. They can even take into consideration the dynamic nature of problems (see Glaser and Kobayashi, 2002; Xiang and Poh, 2002).

Example
Consider the following profit model:

- **Profit** = **Income** − **Expenses**
- **Income** = units sold × unit price
- Units sold = 0.5 × amount used in advertisement
- **Expenses** = unit cost × units sold + fixed cost
An influence diagram for this simple model is shown in Figure 4.2.

SOFTWARE

There are several software products that create and maintain influence diagrams. The solution process of these products transforms the original problem into graphical form. Representative products are

- **Analytica** (Lumina Decision Systems, Los Altos, California, lumina.com). Analytica supports hierarchical diagrams, multidimensional arrays, integrated documentation, and parameter analysis.
- **DecisionPro** (Vanguard Software Corporation, Cary, North Carolina, vanguardsw.com). DecisionPro builds near-influence diagrams. The user decomposes a problem into a hierarchical tree structure (thus defining the relationships among variables). At the bottom, the variables are assigned values, or their values can be randomly generated. DecisionPro is an integrated tool that includes a wide range of decision-making techniques: linear programming, simulation, forecasting, and statistical analysis.
- **DATA and Data Pro** (TreeAge Software Inc., Williamstown, Massachusetts, treeage.com). DATA includes influence diagrams, decision trees, simulation models, and others. It integrates with spreadsheets and Web pages.
- **iDecide** (Definitive Software Inc., Broomfield, Colorado, definitivesoftware.com). Definitive Software’s iDecide creates influence diagram-based decision models with bidirectional integration with Excel spreadsheets. The models can go directly from influence diagrams to Monte Carlo methods.
• *Precision Tree* (Palisade Corporation, Newfield, New York, palisade.com).
 PrecisionTree creates influence diagrams and decision trees directly in an Excel spreadsheet.

 See faculty.fuqua.duke.edu/daweb/dasw6.htm for more. Downloadable demos are available from each vendor’s Web site. All of these Web-enabled systems create models with a treelike structure in such a way that the model can be easily developed and understood. Influence diagrams help focus on the important variables and their interactions. In addition, these software systems can generate a usable model and solve it without converting it for solution by a specialized tool. For example, Analytica lets the model builder describe blocks of the model and how they influence the important result variables. These submodel blocks are disaggregated by a model builder constructing a more detailed model. Finally, at the lowest level, variables are assigned values (see the Lumina Decision Systems Web site, lumina.com). In Figure 4.3a, we show an example of a marketing model in Analytica. This model includes a price submodel and a sales submodel, which appear in Figures 4.2b and 4.2c, respectively.

 See the "2002 Decision Analysis Survey" in O*RiMS Today, June 2002 (updated annually and available online at lionhrtpub.com/orms/) for a survey of decision-analysis software that includes influence diagrams. Also see Maxwell (2002). We next turn to an important implementation vehicle for models: the spreadsheet.

![Figure 4.3a: Analytica Influence Diagram of a Marketing Problem](Image)

Courtesy of Lumina Decision Systems, Los Altos, CA.
4.6 MSS MODELING WITH SPREADSHEETS

Models can be developed and implemented in a variety of programming languages and systems. These range from third-, fourth-, and fifth-generation programming languages to CASE systems and other systems that automatically generate usable software. We focus primarily on *spreadsheets* (with their add-ins), modeling languages, and transparent data analysis tools.
With their strength and flexibility, spreadsheet packages were quickly recognized as easy-to-use implementation software for the development of a wide range of applications in business, engineering, mathematics, and science. As spreadsheet packages evolved, add-ins were developed for structuring and solving specific model classes. These add-ins include Solver (Frontline Systems Inc., Incline Village, Nevada) and What'sBest! (a version of Lindo, Lindo Systems Inc., Chicago, Illinois) for performing linear and nonlinear optimization, Braincel (Promised Land Technologies, Inc., New Haven, Connecticut) for artificial neural networks, Evolver (Palisade Corporation, Newfield, New York) for genetic algorithms, and @Risk (Palisade Corporation, Newfield, New York) for performing simulation studies. Because of fierce market competition, the better add-ins are eventually incorporated directly into the spreadsheets (e.g., Solver in Excel is the well-known GRG"2 nonlinear optimization code).

The spreadsheet is the most popular end-user modeling tool (Figure 4.4) because it incorporates many powerful financial, statistical, mathematical, and other functions. Spreadsheets can perform model solution tasks like linear programming and regression analysis. The spreadsheet has evolved into an important tool for analysis, planning, and modeling. (See Denardo, 2001; Hsiang, 2002; Monahan, 2000; Winston and Albright, 2000.)

Other important spreadsheet features include what-if analysis, goal seeking, data management, and programmability (macros). It is easy to change a cell's value and immediately see the result. Goal seeking is performed by indicating a target cell, its desired value, and a changing cell. Rudimentary database management can be performed, or parts of a database can be imported for analysis (which is essentially how OLAP works with multidimensional data cubes; in fact, most OLAP systems have the
look-and-feel of advanced spreadsheet software once the data are loaded). The programming productivity of building DSS can be enhanced with the use of templates, macros, and other tools.

Most spreadsheet packages provide fairly seamless integration by reading and writing common file structures that allow easy interfacing with databases and other tools. Microsoft Excel and Lotus 1-2-3 are the two most popular spreadsheet packages.

In Figure 4.4 we show a simple loan calculation model (the boxes on the spreadsheet describe the contents of the cells containing formulas). A change in the interest rate (performed by typing in a new number in cell E7) is immediately reflected in the monthly payment (in cell E13). The results can be observed and analyzed immediately. If we require a specific monthly payment, goal seeking (Section 4.10) can be used to determine an appropriate interest rate or loan amount.

Static or dynamic models can be built in a spreadsheet. For example, the monthly loan calculation spreadsheet shown in Figure 4.4 is static. Although the problem affects the borrower over time, the model indicates a single month's performance, which is replicated. A dynamic model, on the other hand, represents behavior over time. The loan calculations in the spreadsheet shown in Figure 4.5 indicate the effect of prepayment on the principal over time. Risk analysis can be incorporated into spreadsheets by using built-in random number generators to develop simulation models (see Section 4.13, and the Web Chapters describing an economic order-quantity simulation model under assumed risk and a spreadsheet simulation model of cash flows).

LeBlanc, Randalls, and Swann (2000) describe an excellent example of a model-based DSS developed in a spreadsheet. It assigns managers to projects for a major construction firm. By using the system, the company did not have to replace a manager.

Spreadsheets were developed for personal computers, but they also run on larger computers. The spreadsheet framework is the basis for multidimensional spreadsheets and OLAP tools, which are described in the next chapter.

4.7 Decision Analysis of a Few Alternatives (Decision Tables and Decision Trees)

Decision situations that involve a finite and usually not too large number of alternatives are modeled by an approach called decision analysis (see Arsham, 2003a, 2003b; and the Decision Analysis Society Web site, faculty.fuqua.duke.edu/daweb/). Using this approach, the alternatives are listed in a table or a graph with their forecasted contributions to the goal(s) and the probability of obtaining the contribution. These can be evaluated to select the best alternative.

Single-goal situations can be modeled with decision tables or decision trees. Multiple goals (criteria) can be modeled with several other techniques described later.

Decision Tables

Decision tables are a convenient way to organize information in a systematic manner. For example, an investment company is considering investing in one of three alternatives: bonds, stocks, or certificates of deposit (CDs). The company is interested in one goal: maximizing the yield on the investment after one year. If it were interested in other goals, such as safety or liquidity, the problem would be classified as one of multicriteria decision analysis (Koksalan and Zionts, 2001) (see DSS in Action 3.2 and 4.1; Dias and Climaco, 2002).

The yield depends on the state of the economy sometime in the future (often called the state of nature), which can be in solid growth, stagnation, or inflation. Experts estimated the following annual yields:

- If there is solid growth in the economy, bonds will yield 12 percent, stocks 15 percent, and time deposits 6.5 percent.
- If stagnation prevails, bonds will yield 6 percent, stocks 3 percent, and time deposits 6.5 percent.
- If inflation prevails, bonds will yield 3 percent, stocks will bring a loss of 2 percent, and time deposits will yield 6.5 percent.

The problem is to select the one best investment alternative. These are assumed to be discrete alternatives. Combinations such as investing 50 percent in bonds and 50 percent in stocks must be treated as new alternatives.

The investment decision-making problem can be viewed as a two-person game (see Kelly, 2002). The investor makes a choice (a move) and then a state of nature occurs (makes a move). The payoff is shown in a table representation (Table 4.2) of a
PART II DECISION SUPPORT SYSTEMS

Alternative

State of Nature (Uncontrollable Variables)

Solid Growth (%) Stagnation (%) Inflation (%)

Bonds 12.0 6.0 3.0
Stocks 15.0 3.0 -2.0
CDs 6.5 6.5 6.5

mathematical model. The table includes decision variables (the alternatives), uncontrollable variables (the states of the economy, e.g., the environment), and result variables (the projected yield, e.g., outcomes). All the models in this section are structured in a spreadsheet framework.

If this were a decision-making problem under certainty, we would know what the economy will be and could easily choose the best investment. But this is not the case, and so we must consider the two situations of uncertainty and risk. For uncertainty, we do not know the probabilities of each state of nature. For risk, we assume that we know the probabilities with which each state of nature will occur.

TREATING UNCERTAINTY

There are several methods of handling uncertainty. For example, the optimistic approach assumes that the best possible outcome of each alternative will occur and then selects the best of the bests (stocks). The pessimistic approach assumes that the worst possible outcome for each alternative will occur and selects the best of these (CDs). Another approach simply assumes that all states of nature are equally likely. See Clemen and Reilly (2000), Goodwin and Wright (2000), Kontogiorghes, Rustem, and Siokos (2002). There are serious problems with every approach for handling uncertainty. Whenever possible, the analyst should attempt to gather enough information so that the problem can be treated under assumed certainty or risk.

TREATING RISK

The most common method for solving this risk analysis problem is to select the alternative with the greatest expected value. Assume that experts estimate the chance of solid growth at 50 percent, that of stagnation at 30 percent, and that of inflation at 20 percent. Then the decision table is rewritten with the known probabilities (Table 4.3). An expected value is computed by multiplying the results (outcomes) by their respective probabilities and adding them. For example, investing in bonds yields an expected return of 12(0.5) + 6(0.3) + 3(0.2) = 8.4 percent.

This approach can sometimes be a dangerous strategy, because the "utility" of each potential outcome may be different from the "value." Even if there is an infinitesimal chance of a catastrophic loss, the expected value may seem reasonable, but the investor

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Solid Growth, %</th>
<th>Stagnation, %</th>
<th>Inflation, %</th>
<th>Expected Value, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds</td>
<td>12.0</td>
<td>6.0</td>
<td>3.0</td>
<td>8.4 (maximum)</td>
</tr>
<tr>
<td>Stocks</td>
<td>15.0</td>
<td>3.0</td>
<td>-2.0</td>
<td>8.0</td>
</tr>
<tr>
<td>CDs</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
</tr>
</tbody>
</table>
may not be willing to cover the loss. For example, suppose a financial advisor presents you with an "almost sure" investment of $1,000 that can double your money in one day, then says, "Well, there is a .9999 probability that you will double your money, but unfortunately there is a .0001 probability that you will be liable for a $500,000 out-of-pocket loss." The expected value of this investment is
\[0.9999 \times ($2,000 - $1,000) + 0.0001 \times (-$500,000 - $1,000) = $999.90 - $50.10 = $949.80 \]
The potential loss could be catastrophic for any investor who is not a billionaire. Depending on the investor's ability to cover the loss, an investment has different expected utilities. Remember that the investor makes the decision only once.

DECISION TREES

An alternative representation of the decision table is a decision tree (Mind Tools Community, www.mindtools.com). A decision tree shows the relationships of the problem graphically and can handle complex situations in a compact form. However, a decision tree can be cumbersome if there are many alternatives or states of nature. DATA (TreeAge Software Inc., Williamstown, Massachusetts, treeage.com) and PrecisionTree (Palisade Corporation, Newfield, New York, palisade.com) include powerful, intuitive, and sophisticated decision tree analysis systems. Several other methods of treating risk are discussed later in the book. These include simulation, certainty factors, and fuzzy logic.

A simplified investment case of multiple goals is shown in Table 4.4. The three goals (criteria) are yield, safety, and liquidity. This situation is under assumed certainty; that is, only one possible consequence is projected for each alternative (the more complex cases of risk or uncertainty could be considered). Some of the results are qualitative (such as low and high) rather than numeric.

Rosetti and Selandar (2001) discuss the multicriteria approach to analyzing hospital delivery systems. Their method captures the decision-maker's beliefs through a series of sequential, rational, and analytic processes. They used the Analytic Hierarchy Process (AHP) (Forman and Selly 2001; Saaty 1999; Palmer 1999). Phillips and Forgione (2002) describe a multiple-objective approach based on the AHP to evaluating DSS. Raju and Pillai (1999) applied a multicriteria model to river-basin planning. Another example of a DSS designed for handling multiple-goal decision making is described by Murthy et al. (1999). They developed a fairly complex paper manufacturing and scheduling DSS that saved a substantial sum of money annually. Barba-Romero (2001) describe a government DSS that utilizes a multicriteria model in acquiring data processing systems. In DSS in Action 3.2, we describe a Web-based multicriteria problem for the Cameron and Barkley Company. The buyers faced the conflicting goals of minimizing inventory and maintaining high levels of customer service. There are many decision analysis and multicriteria decision-making software packages, including DecisionPro (Vanguard Software Corporation, vanguardsw.com), Expert Choice, Expert Choice 2000 2nd Edition for Groups, and the Web-based special versions for strategic planning, human resources, procurement, and more (Expert

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Yield (%)</th>
<th>Safety</th>
<th>Liquidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds</td>
<td>8.4</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Stocks</td>
<td>8.0</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>CDs</td>
<td>6.5</td>
<td>Very high</td>
<td>High~</td>
</tr>
</tbody>
</table>
Choice Inc., expertchoice.com), Hipre and the Java Applet Web-Hipre (Systems Analysis Laboratory, Helsinki University of Technology, hipre.hut.fi; see Mustajoki and Hamalainen, 2000), and Logical Decisions for Windows and for Groups (Logical Decisions Group, logicaldecisions.com). Demo software versions of all these systems are available on the Web. Akarte et al. (2001) describe how a Web-based implementation of the Analytic Hierarchy Process was used to solve a multicriteria problem in vendor selection. See the Scott Homes Web Chapter for an example of the use of Expert Choice in solving a similar multicriteria problem. Recent multicriteria research is described in Koksalan and Zionts (2001).

See Clemen and Reilly (2000), Goodwin and Wright (2000), and the Decision Analysis Society Web site (facultyJuqua.duke.edu/daweb/) for more on decision analysis. Although quite complex, it is possible to apply mathematical programming (Section 4.9) directly to decision-making situations under risk (Sen and Higle, 1999).

4.8 THE STRUCTURE OF MSS MATHEMATICAL MODELS

We present the topics of MSS mathematical models (mathematical, financial, engineering, etc.). These include the components and the structure of models.

THE COMPONENTS OF MSS MATHEMATICAL MODELS

All models are made up of three basic components (Figure 4.6): decision variables, uncontrollable variables (and/or parameters), and result (outcome) variables. Mathematical relationships link these components together. In nonquantitative models, the relationships are symbolic or qualitative. The results of decisions are determined by the decision made (value of the decision variables), the factors that cannot be controlled by the decision-maker (in the environment), and the relationships among the variables. The modeling process involves identifying the variables and relationships among them. Solving a model determines the values of these and the result variable(s).

Result variables reflect the level of effectiveness of the system; that is, they indicate how well the system performs or attains its goal(s). These variables are outputs. Examples of result variables are shown in Table 4.5. Result variables are considered dependent variables. Intermediate result variables are sometimes used in modeling to identify intermediate outcomes. In the case of a dependent variable, another event must occur first before the event described by the variable can occur. Result variables

Figure 4.6: The Ge Antititative Model

- Uncontrollable variables
- Mathematical relationships
- Decision variables
- Result variables

TABLE 4.5. Examples of the Components of Models

<table>
<thead>
<tr>
<th>Area</th>
<th>Decision Variables</th>
<th>Result Variables</th>
<th>Uncontrollable Variables and Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial investment</td>
<td>Investment alternatives and amounts, How long to invest, When to invest</td>
<td>Total profit, risk, Rate of return (ROI), Earnings per share, Liquidity level</td>
<td>Inflation rate, Prime rate, Competition</td>
</tr>
<tr>
<td>Marketing</td>
<td>Advertising budget, Where to advertise</td>
<td>Market share, Customer satisfaction</td>
<td>Customers' income, Competitors' actions</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>What and how much to produce, Inventory levels, Compensation programs</td>
<td>Total cost, Quality level, Employee satisfaction</td>
<td>Machine capacity, Technology, Materials prices</td>
</tr>
<tr>
<td>Accounting</td>
<td>Use of computers, Audit schedule</td>
<td>Data processing cost, Error rate</td>
<td>Computer technology, Tax rates, Legal requirements</td>
</tr>
<tr>
<td>Transportation</td>
<td>Shipment schedule, Use of smart cards</td>
<td>Total transport cost, Payment float time</td>
<td>Delivery distance, Regulations</td>
</tr>
<tr>
<td>Services</td>
<td>Staffing levels</td>
<td>Customer satisfaction</td>
<td>Demand for services</td>
</tr>
</tbody>
</table>

depend on the occurrence of the decision and the uncontrollable independent variables.

DECISION VARIABLES

Decision variables describe alternative courses of action. The decision-maker controls the decision variables. For example, for an investment problem, the amount to invest in bonds is a decision variable. In a scheduling problem, the decision variables are people, times, and schedules. Other examples are listed in Table 4.5.

UNCONTROLLABLE VARIABLES OR PARAMETERS

In any decision-making situation, there are factors that affect the result variables but are not under the control of the decision-maker. Either these factors can be fixed, in which case they are called parameters, or they can vary (variables). Examples are the prime interest rate, a city’s building code, tax regulations, and utilities costs (others are shown in Table 4.5). Most of these factors are uncontrollable because they are in and determined by elements of the system environment in which the decision-maker works. Some of these variables limit the decision-maker and therefore form what are called the constraints of the problem.

INTERMEDIATE RESULT VARIABLES

Intermediate result variables reflect intermediate outcomes. For example, in determining machine scheduling, spoilage is an intermediate result variable, and total profit is the result variable (spoilage is one determinant of total profit). Another example is employee salaries. This constitutes a decision variable for management. It determines
employee satisfaction (intermediate outcome), which in turn determines the productivity level (final result).

THE STRUCTURE OF MSS MATHEMATICAL MODELS

The components of a quantitative model are linked together by mathematical (algebraic) expressions—equations or inequalities.

A very simple financial model is \(P = R - C \), where \(P \) = profit, \(R \) = revenue, and \(C \) = cost. The equation describes the relationship among these variables.

Another well-known financial model is the simple present-value cash flow model,

\[
F = P \cdot (1 + i)^n
\]

where \(P \) = present value, \(F \) = a future single payment in dollars, \(i \) = interest rate (percentage), and \(n \) = number of years. With this model, one can readily determine the present value of a payment of $100,000 to be made five years from today, at a 10 percent (0.1) interest rate, to be

\[
P = \frac{100,000}{(1 + 0.1)^5} = $62,092
\]

We present more interesting, complex mathematical models in the following sections.

4.9 MATHEMATICAL PROGRAMMING

OPTIMIZATION

The basic idea of optimization was introduced in Chapter 2. Linear programming (LP) is the best-known technique in a family of optimization tools called mathematical programming. It is used extensively in DSS (see DSS in Action 4.2). Linear programming models have many important applications in practice. For examples, see the Web Chapter on Procter and Gamble, where several linear programming problems were used, and IMERYS Case Application 4.1.

MATHEMATICAL PROGRAMMING

Mathematical programming is a family of tools designed to help solve managerial problems in which the decision-maker must allocate scarce resources among competing activities to optimize a measurable goal. For example, the distribution of machine time (the resource) among various products (the activities) is a typical allocation problem. Linear programming (LP) allocation problems usually display the following characteristics.

LP Characteristics

- A limited quantity of economic resources is available for allocation.
- The resources are used in the production of products or services.
- There are two or more ways in which the resources can be used. Each is called a solution or a program.
- Each activity (product or service) in which the resources are used yields a return in terms of the stated goal.
- The allocation is usually restricted by several limitations and requirements called constraints.
Efes Beverage Group (Efes), a beer company in Turkey, wanted to determine the best locations for new malt plants. In an earlier project, Efes had used a mathematical programming model to determine where to locate new breweries. As some of these new breweries were being constructed, Efes managers asked the same team to help.

Various sites were evaluated as possible locations for new malt plants. An economic analysis revealed the inferiority of some alternatives that some managers had championed. To evaluate the remaining possibilities, a mixed-integer programming model was developed that considered both the location of new malt plants and the distribution of barley and malt. It considered the long-run effects of the decisions and minimized the present value of total costs. The model readily identified locations for the new malt plants. With the user-friendly optimization software, sensitivity analyses were conducted to determine the impact of forcing the selection of certain favored sites. Some were deemed acceptable, while others caused large increases in the optimal overall system cost (about $19 million). Efes used the model for distribution decisions. As a next step, the location and distribution decisions can be linked (as in Case Application 4.1).

The LP allocation model is based on the following rational economic assumptions:

LP Assumptions

- Returns from different allocations can be compared; that is, they can be measured by a common unit (e.g., dollars or utility).
- The return from any allocation is independent of other allocations.
- The total return is the sum of the returns yielded by the different activities.
- All data are known with certainty.
- The resources are to be used in the most economical manner.

Allocation problems typically have a large number of possible solutions. Depending on the underlying assumptions, the number of solutions can be either infinite or finite. Usually, different solutions yield different rewards. Of the available solutions, at least one is the best, in the sense that the degree of goal attainment associated with it is the highest (i.e., the total reward is maximized). This is called an optimal solution, and can be found by using a special algorithm.

LINEAR PROGRAMMING (LP)

Every LP problem is composed of decision variables (whose values are unknown and searched for), an objective function (a linear mathematical function that relates the decision variables to the goal, measures goal attainment, and is to be optimized), objective function coefficients (unit profit or cost coefficients indicating the contribution to the objective of one unit of a decision variable), constraints (expressed in the form of linear inequalities or equalities that limit resources and/or requirements; these relate the variables through linear relationships), capacities (which describe the upper and sometimes lower limits on the constraints and variables), and input-output (technology) coefficients (which indicate resource utilization for a decision variable). See DSS in Focus 4.3.
Linear programming is perhaps the best-known optimization model. It deals with the optimal allocation of resources among competing activities. The allocation problem (see Hsiang, 2002) is represented by the model described as follows:

The problem is to find the values of the decision variables \(X_1, X_2, \ldots \) such that the value of the result variable \(Z \) is maximized, subject to a set of linear constraints that express the technology, market conditions, and other uncontrollable variables. The mathematical relationships are all linear equations and inequalities. Theoretically, there are an infinite number of possible solutions to any allocation problem of this type. Using special mathematical procedures, the linear programming approach applies a unique computerized search procedure that finds a best solution(s) in a matter of seconds. Furthermore, the solution approach provides automatic sensitivity analysis (Section 4.10).

THE LP PRODUCTION MIX MODEL FORMULATION

MBI Corporation manufactures special-purpose computers. A decision must be made: How many computers should be produced next month at the Boston plant? Two types of computers are considered: the CC-7, which requires 300 days of labor and $10,000 in materials, and the CC-8, which requires 500 days of labor and $15,000 in materials. The profit contribution of each CC-7 is $8,000, whereas that of each CC-8 is $12,000. The plant has a capacity of 200,000 working days per month, and the material budget is $8 million per month. Marketing requires that at least 100 units of the CC-7 and at least 200 units of the CC-8 be produced each month. The problem is to maximize the company's profits by determining how many units of the CC-7 and how many units of the eC-8 should be produced each month. Note that in a real-world environment it could possibly take months to obtain the data in the problem statement, and while gathering the data, the decision-maker would no doubt uncover facts about how to structure the model to be solved. This was true for the situation described in IMERYS Case Applications 2.1 and 2.2. Web-based tools for gathering data can help (see DSS in Action 2.6).

MODELING

A standard linear programming (LP) model can be developed (see DSS in Focus 4.3). It has three components:

- **Decision variables:**

 \(X_1 = \) units of CC-7 to be produced
 \(X_2 = \) units of CC-8 to be produced

- **Result variable:**

 Total profit = \(Z \). The objective is to maximize total profit: \(Z = 8,000X_1 + 12,000X_2 \)

- **Uncontrollable variables (constraints):**

 Labor constraint: \(300X_1 + 500X_2 \leq 200,000 \) (in days)
 Budget constraint: \(10,000X_1 + 15,000X_2 \leq 8,000,000 \) (in dollars)
 Marketing requirement for CC-7: \(X_1 \geq 100 \) (in units)
 Marketing requirement for CC-8: \(X_2 \geq 200 \) (in units)

This information is summarized in Figure 4.7.

The model also has a fourth, hidden component. Every linear programming model has some internal intermediate variables that are not explicitly stated. The labor and
budget constraints may each have some "slack" in them when the left-hand side is strictly less than the right-hand side. These slacks are represented internally by slack variables that indicate excess resources available. The marketing requirement constraints may each have some "surplus" in them when the left-hand side is strictly greater than the right-hand side. These surpluses are represented internally by surplus variables indicating that there is some room to adjust the right-hand sides of these constraints. These slack and surplus variables are intermediate. They can be of great value to the decision-maker because linear programming solution methods use them in establishing sensitivity parameters for economic what-if analyses.

The product-mix model has an infinite number of possible solutions. Assuming that a production plan is not restricted to whole numbers—a reasonable assumption in a monthly production plan—we want a solution that maximizes total profit: an optimal solution.

Fortunately, Excel comes with the add-in Solver that can readily obtain an optimal (best) solution to this problem. We enter these data directly into an Excel spreadsheet, activate Solver, and identify the goal (set Target Cell equal to Max), decision variables (By Changing Cells), and constraints (Total Consumed elements must be less than or equal to Limit for the first two rows and must be greater than or equal to Limit for the third and fourth rows). Also, in Options, activate the boxes Assume Linear Model and Assume Non-negative, and then solve the problem. Next, select all three reports Answer, Sensitivity, and Limits to obtain an optimal solution of $X_1 = 333.33, X_2 = 200, \text{Profit} = \$5,066,667$ as shown in Figure 4.8. Solver produces three useful reports about the solution. Try it.

The evaluation of the alternatives and the final choice depend on the type of criteria we have selected. Are we trying to find the best solution? Or will a "good enough" result be sufficient? (See Chapter 2.)

Linear programming models (and their specializations and generalizations) can be specified directly in a number of user-friendly modeling systems. Two of the best known are Lindo and Lingo (Lindo Systems Inc., Chicago, Illinois, lindo.com; demos are available from the Lindo Web site) (Schrage, 1997). Lindo is a linear and integer programming system. Models are specified in essentially the same way that they are defined algebraically. Based on the success of Lindo, the company developed Lingo, a modeling language that includes the powerful Lindo optimizer plus extensions for solving nonlinear problems. The IMERYS DSS (Case Application 4.1) was implemented using Lingo.
as its model generator and solver. Lindo and Lingo models and solutions of the productmix model are shown, respectively, in DSS in Focus 4.4 and 4.5.

The uses of mathematical programming, especially of linear programming, are fairly common in practice. There are standard computer programs available. Optimization functions are available in many DSS integrated tools, such as Excel. Also, it is easy to interface other optimization software with Excel, database management systems, and similar tools. Optimization models are often included in decision support implementations, as shown in DSS in Action 4.2. More details on linear programming, a description of another classic LP problem called the blending problem, and an Excel spreadsheet formulation and solution are described in a Web Chapter.

The most common optimization models can be solved by a variety of mathematical programming methods. They are:

- Assignment (best matching of objects)
- Dynamic programming
- Goal programming
- Investment (maximizing rate of return)
- Linear and integer programming
- Network models for planning and scheduling
- Nonlinear programming
- Replacement (capital budgeting)
- Simple inventory models (e.g., economic order quantity)
- Transportation (minimize cost of shipments)
Here is the Lindo version of the product-mix model. Note that the model is essentially identical to the algebraic expression of the model.

«The Lindo Model:»

MAX 8000 X1 +12000 X2
SUBJECT TO
LABOR) 300 X1 + 500 X2 <= 200000 10000 X1
BUDGET) + 15000 X2 <= 800000 X1 >= 100
MARKET1) X2 >= 200
MARKET2)
END

«Generated Solution Report»

LP OPTIMUM FOUND AT STEP 3

OBJECTIVE FUNCTION VALUE
1) 506667.00

VARIABLE VALUE REDUCED COST
X 1 333.333300 .00000
X2 200.000000 0

ROW SLACK OR SURPLUS DUAL PRICES
LABOR) .000000 26.666670
BUDGET) 1666667.00000 .000000
MARKET1) 233.333300 .000000
MARKET2) .000000 -1333.333000

NO. ITERATIONS= 3

RANGES IN WHICH THE BASIS IS UNCHANGED:

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>CURRENT COEF</th>
<th>ALLOWABLE COEFFICIENT RANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>8000.000000</td>
<td>INCREASE 799.999800 DECREASE</td>
</tr>
<tr>
<td>1</td>
<td>12000.000000</td>
<td>INFINITY 1333.333000 INFINITY</td>
</tr>
<tr>
<td>X2</td>
<td>200.000000</td>
<td>INFINITY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROW</th>
<th>CURRENT RHS</th>
<th>ALLOWABLE RANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABOR</td>
<td>200000.00000</td>
<td>INCREASE 70000.000000 DECREASE</td>
</tr>
<tr>
<td>BUDGET</td>
<td>800000.00000</td>
<td>50000.000000 70000.000000</td>
</tr>
<tr>
<td>MARKET1</td>
<td>100.000000</td>
<td>INFINITY 1666667.000000</td>
</tr>
<tr>
<td>MARKET2</td>
<td>200.000000</td>
<td>INFINITY 200.00000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>CURRENT COEF</th>
<th>RIGHT-HAND-SIDE RANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>INFINITY 1333.333000 INFINITY</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>140.000000</td>
<td>INFINITY</td>
</tr>
<tr>
<td>MARKET1</td>
<td>233.333300</td>
<td>INFINITY</td>
</tr>
<tr>
<td>MARKET2</td>
<td>140.000000</td>
<td>INFINITY</td>
</tr>
</tbody>
</table>
LINGO EXAMPLE: THE PRODUCT-MIX MODEL

Here is the Lingo version of the product-mix model. Note the specialized modeling-language commands, SET definitions, and DATA definitions. Though this model is much more complex than the Lindo version, it is much more powerful in that additional computers or resources can be added by simply augmenting the DATA and SET sections. The model itself is unchanged. In models that interact with databases, the data in the database are simply modified and the model file does not change. This approach was used in IMERYS Case Application 4.1.

MODEL:
! The Product-Mix Example;
SETS:
COMPUTERS / CC7, CC8 / : PROFIT, QUANTITY, MARKETLIM
RESOURCES / LABOR, BUDGET / : AVAILABLE;
RESBYCOMP (RESOURCES, COMPUTERS) : UNITCONSUMPTION;
ENDSETS
DATA:
PROFIT MARKETLIM
8000, 100, 12000,
200;
AVAILABLE = 200000, 8000000
UNITCONSUMTION
300, 500,
10000, 15000;
ENDDATA
MAX = @SUM (COMPUTERS: PROFIT * QUANTITY) @FOR
(RESOURCES (I):
 @SUM (COMPUTERS (J):
 UNITCONSUMPTION (I,J) * QUANTITY (J)) <=
 AVAILABLE (I));
@FOR (COMPUTERS (J):
 QUANTITY (J) >= ~KETLIM (J)) !
Alternative
@FOR (COMPUTERS (J):
 @BND (MARKETLIM (J), QUANTITY (J) , 1000000))

(Partial) Solution Report

Global optimal solution found at step: 2
Objective-value: 5066667.

Variable PROFIT (CC7) PROFIT (CC8) QUANTITY (CC7) QUANTITY (CC8) MARKETLIM(CC7) MARKETLIM (CC8) AVAILABLE (LABOR) AVAILABLE (BUDGET) Value 8000.000 12000.00 333.3333 200.0000 100.0000 200.0000 200000.0 8000000. Reduced Cost 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
Some important recent applications of mathematical programming include its application to Internet network design (Gourdin, 2001) and the cell telephone frequency allocation problem (Bourjolly et al., 2001). Obtaining an optimal solution to both of these problems has a critical impact on how well the Internet/Web functions, and on how effective e-commerce and e-commerce can be. Other examples include those found in production/operations management (e.g., the lot-sizing problem; see Wolsey, 2002), and the knapsack problem (stuff a knapsack with the highest-valued items without exceeding its weight limit), which is used to determine which experiments to take aboard spacecraft (see Erlebach, Kellerer, and Pferschy, 2002). Bossaerts, Fine, and Ledyard (2000) describe how an integer programming package, available over the Web, is used by the Bond Connect online marketplace for fixed-income security analysis to help match and price trades in a combinatorial auction setting. Geoffrion and Krishnan (2001) describe how mathematical modeling is moving to the Web. For example, MathML, is a markup language for mathematical processing (www.w3.org/Math/).

4.10 MULTIPLE GOALS, SENSITIVITY ANALYSIS, WHAT-IF, AND GOAL SEEKING

The search process described earlier is coupled with evaluation. Evaluation is the final step that leads to a recommended solution.

MULTIPLE GOALS

The analysis of management decisions aims at evaluating, to the greatest possible extent, how far each alternative advances management toward its goals. Unfortunately, managerial problems are seldom evaluated with a single simple goal like profit maximization. Today's management systems are much more complex, and one with a single goal is rare. Instead, managers want to attain simultaneous goals, some of which may conflict. Different stakeholders have different goals. Therefore, it is often necessary to analyze each alternative in light of its determination of each of several goals (see Koksalan and Zionts, 2001).

For example, consider a profit-making firm. In addition to earning money, the company wants to grow, develop its products and employees, provide job security to its workers, and serve the community. Managers want to satisfy the shareholders and at
the same time enjoy high salaries and expense accounts, and employees want to increase their take-home pay and benefits. When a decision is to be made, say, about an investment project, some of these goals complement each other, whereas others conflict.

Many quantitative models of decision theory are based on comparing a single measure of effectiveness, generally some form of "utility" to the decision-maker. Therefore, it is usually necessary to transform a multiple-goal problem into a single-measure-of-effectiveness problem before comparing the effects of the solutions. This is a common method for handling multiple goals in a linear programming model. For example, see DSS in Focus 4.6, in which we have modified the MBI model into a goal programming model.

Certain difficulties may arise when analyzing multiple goals:

- It is usually hard to obtain an explicit statement of the organization's goals.
- The decision-maker may change the importance assigned to specific goals over time or for different decision scenarios.
- Goals and subgoals are viewed differently at various levels of the organization and within different departments.
- Goals change in response to changes in the organization and its environment.
- The relationship between alternatives and their role in determining goals may be difficult to quantify.
- Complex problems are solved by groups of decision-makers, each of whom has a personal agenda.
- Participants assess the importance (priorities) of the various goals differently.

Several methods of handling multiple goals can be used when working with MSS. The most common ones are

- Utility theory
- Goal programming
- Expression of goals as constraints using linear programming
- A point system

Some methods even work interactively with the decision-maker in searching the solution space for an alternative that provides for required attainment of all goals while searching for an "efficient" solution. The Web Chapters on Scott Homes and Selecting a College/University contain examples. Also see Ehrgott and Gandibleaux (2002). New methods are continually being developed for handling multiple goals; For example, see Koksalan and Zionts (2001) and Erlebach, Kellerer, and Pferschy (2002).

SENSITIVITY ANALYSIS

A model builder makes predictions and assumptions regarding the input data, many of which deal with the assessment of uncertain futures. When the model is solved, the results depend on these data. Sensitivity analysis attempts to assess the impact of a change in the input data or parameters on the proposed solution (the result variable).

Sensitivity analysis is extremely important in MSS because it allows flexibility and adaptation to changing conditions and to the requirements of different decisionmaking situations, provides a better understanding of the model and the decision-making situation it attempts to describe, and permits the manager to input data so that confidence in the model increases. Sensitivity analysis tests such relationships as
In a goal programming model, all goals are represented as constraints that have target values for the left-hand side. For example, the labor constraint has a target value of 200,000 days. If the target is met, there is no penalty. If we use more than 200,000 days of labor, we are over our goal, and there is a penalty for the deviation. If we are under our goal (i.e., we use less labor than the target amount), there may also be a penalty, perhaps wages must be paid for no production. The same is true of the budget constraint. In this model, we convert the objective of maximizing profit to a goal of profit meeting or exceeding a target level of $5 million. If we are under our goal, there is a penalty; but if we are over our goal, there is no penalty. Penalties are imposed by weights indicating the importance of each of the multiple objectives and the importance of each being over or under our goal. The marketing constraints here are not goals, but required limits.

Profit goal: \[8,000 \times_i + 12,000 \times_j - OVER_1 + UNDER_1 + 5,000,000\]

Labor goal: \[300 \times_1 + 500 \times_2 - OVER_2 + UNDER_2 + 200,000\]

Budget goal: \[10,000 \times_1 + 15,000 \times_2 - OVER_3 + UNDER_3 + 8,000,000\]

Marketing requirement for CC-7: \[\times_1 \geq 100\]

Marketing requirement for CC-8: \[\times_2 \geq 200\]

The objective is to minimize a weighted sum of the OVER and UNDER variables. For a particular solution, the UNDER and OVER variables indicate the amount the left-hand side of the goal constraint value varies from the target. Below is a Lingo model and solution. The budget is right on target (it had the highest weights in the objective). The profit is outstanding. We produce 500 units of CC-7 (\[\times_1\]) and 200 units of CC-8 (\[\times_2\]) we exceeded the $5 million by $1.4 million (\[= OVER_1\]), which leads to a total profit of $6.4 million, which is $1.3 million greater than before. But because \[OVER_2\] is 50,000, we are using an additional 50,000 hours of labor. Since the weight in the objective for \[OVER_2\] reflects the marginal cost of obtaining additionallabor, this solution is an improvement over the standard linear programming one.
The impact of changes in external (uncontrollable) variables and parameters on outcome variable(s).
- The impact of changes in decision variables on outcome variable(s)
- The effect of uncertainty in estimating external variables
- The effects of different dependent interactions among variables
- The robustness of decisions under changing conditions.

Sensitivity analyses are used for:
- Revising models to eliminate too large sensitivities
- Adding details about sensitive variables or scenarios
- Obtaining better estimates of sensitive external variables
- Altering the real-world system to reduce actual sensitivities
- Accepting and using the sensitive (and hence vulnerable) real world, leading to the continuous and close monitoring of actual results

The two types of sensitivity analyses are automatic and trial-and-error.

AUTOMATIC SENSITIVITY ANALYSIS

Automatic sensitivity analysis is performed in standard quantitative model implementations such as linear programming. For example, it reports the range within which a certain input variable or parameter value (e.g., unit cost) can vary without making any significant impact on the proposed solution. Automatic sensitivity analysis is usually limited to one change at a time, and only for certain variables. However, it is very powerful because of its ability to establish ranges and limits very fast (and with little or no additional computational effort). For example, automatic sensitivity analysis is part of the linear programming (LP) solution report for the MBI Corporation product-mix problem described earlier. Sensitivity analysis is provided by both Solver and Lindo. If the right-hand side of the marketing constraint on CC-8 could be decreased by one unit, then the net profit would increase by $1,333.33. This is valid for the right-hand side decreasing to zero. For details see Hillier and Lieberman (2003), Taha (2003), and Taylor (2002).

TRIAL AND ERROR

The impact of changes in any variable, or in several variables, can be determined through a simple trial-and-error approach. You change some input data and solve the problem again. When the changes are repeated several times, better and better solutions may be discovered. Such experimentation, which is easy to conduct when using appropriate modeling software like Excel, has two approaches: what-if analysis and goal seeking.

WHAT-IF ANALYSIS

What-if analysis is structured as What will happen to the solution if an input variable, an assumption, or a parameter value is changed?

Here are some examples:
- What will happen to the total inventory cost if the cost of carrying inventories increases by 10 percent?
- What will be the market share if the advertising budget increases by 5 percent?

Assuming the appropriate user interface, it is easy for managers to ask the computer model these types of questions and get immediate answers. Furthermore, they
Initially, initial sales were 100 growing at 3 percent per quarter yielding an annual net profit of $127. By changing the initial sales cell to 120 and the sales growth rate to 4 percent, the annual net profit rose to $182.

can perform multiple cases and thereby change the percentage, or any other data in the question, as desired. All this is done directly, without a computer programmer.

Figure 4.9 shows a spreadsheet example of a what-if query for a cash flow problem. The user changes the cells containing the initial sales (from 100 to 120) and the sales growth rate (from 3 percent to 4 percent per quarter). The computer immediately recomputes the value of the annual net profit cell (from $127 to $182). What-if analysis is common in expert systems. Users are given the opportunity to change their answers to some of the system's questions, and a revised recommendation is found.

GOAL SEEKING

Goal seeking analysis calculates the values of the inputs necessary to achieve a desired level of an output (goal). It represents a backward solution approach. Some examples of goal seeking are:

- What annual R&D budget is needed for an annual growth rate of 15 percent by 2005?
- How many nurses are needed to reduce the average waiting time of a patient in the emergency room to less than 10 minutes?

An example of goal seeking is shown in Figure 4.10. Initially, initial sales were 100 growing at 3 percent per quarter, yielding an annual net profit of $127. By changing the
The goal to be achieved is NPV equal to zero, which determines the internal rate of return (IRR) of this cash flow including the investment. We set the NPV cell to value 0 by changing the interest rate cell. The answer is 38.77059 percent.

initial sales cell to 120 and the sales growth rate to 4 percent, the annual net profit rose to $182.

COMPUTING A BREAK-EVEN POINT USING GOAL SEEKING

Some modeling software packages can directly compute break-even points, an important application of goal seeking. This involves determining the value of the decision variables (e.g., quantity to produce) that generate zero profit. For example, in a financial planning model in Excel, the internal rate of return is the interest rate that produces a net present value of zero.

In many decision support systems, it can be difficult to conduct sensitivity analysis because the prewritten routines usually present only a limited opportunity for asking what-if questions. In a DSS, the what-if and the goal-seeking options must be easy to perform.

The goal to be achieved is NPV equal to zero, which determines the internal rate of return (IRR) of this cash flow including the investment. We set the NPV cell to value 0 by changing the interest rate cell. The answer is 38.77059 percent.
4.11 PROBLEM-SOLVING SEARCH METHODS

SEARCH APPROACHES

When problem-solving, the choice phase involves a search for an appropriate course of action (among those identified during the design phase) that can solve the problem. There are several major search approaches, depending on the criteria (or criterion) of choice and the type of modeling approach used. These search approaches are shown in Figure 4.11. For normative models, such as mathematical programming-based ones, either an analytical approach is used or a complete, exhaustive enumeration (comparing the outcomes of all the alternatives) is applied. For descriptive models, a comparison of a limited number of alternatives is used, either blindly or by employing heuristics. Usually the results guide the decision-maker's search.

ANALYTICAL TECHNIQUES

Analytical techniques use mathematical formulas to derive an optimal solution directly or to predict a certain result. Analytical techniques are used mainly for solving structured problems, usually of a tactical or operational nature, in areas such as resource allocation or inventory management. Blind or heuristic search approaches are generally employed to solve more complex problems.

ALGORITHMS

Analytical techniques may use algorithms to increase the efficiency of the search. An algorithm is a step-by-step search process (Figure 4.12) for obtaining an optimal solution. (Note: there may be more than one optimum, so we say an optimal solution rather than the optimal solution.) Solutions are generated and tested for possible improvements. An improvement is made whenever possible, and the new solution is subjected to an improvement test based on the principle of choice (objective value found). The process continues until no further improvement is possible. Most mathematical programming problems are solved by efficient algorithms (see Armstrong, 2001). Web search engines use algorithms to speed up the search and produce accurate results. Monika Henzinger developed the algorithms that Google uses in its searches. Google's algorithms are so good that Yahoo pays $7 million annually to use them (see Patton, 2002/2003).

BLIND SEARCH

In conducting a search, a description of a desired solution may be given. This is called a goal. A set of possible steps leading from initial conditions to the goal is called the search steps. Problem-solving is done by searching through the space of possible solutions. The first of these search methods is blind search. The second is heuristic search, discussed in the next section.

Queen search techniques are arbitrary search approaches that are not guided. There are two types of blind searches: a complete enumeration, for which all the alternatives are considered and therefore an optimal solution is discovered; and an incomplete, partial search, which continues until a good-enough solution is found. The latter is a form of suboptimization.

There are practical limits on the amount of time and computer storage available for blind searches. In principle, blind search methods can eventually find an optional
Search Process

Optimization (Analytical)

- Generate improved solutions or get the best solution directly.

Blind search

- Complete enumeration (exhaustive).
- All possible solutions are checked.

Heuristics

- Check only some alternatives; systematically drop inferior solutions.

Comparisons

- Stop when all alternatives are checked.
- Stop when solution is good enough.

FIGURE 4.11 FORMAL SEARCH APPROACHES
solution in most search situations, and in some situations the scope of the search can be limited; however, the method is not practical for solving very large problems because too many solutions must be examined before an optimal solution is found.

HEURISTIC SEARCH

For many applications, it is possible to find rules to guide the search process and reduce the amount of necessary computations. This is done by heuristic search methods, which we describe next.

4.12 HEURISTIC PROGRAMMING

The determination of optimal solutions to some complex decision problems could involve a prohibitive amount of time and cost or may even be impossible. Alternatively, the simulation approach (Section 4.13) maybe lengthy, complex, inappropriate, and even inaccurate. Under these conditions it is sometimes possible to obtain satisfactory solutions more quickly and less expensively by using heuristics.

Heuristics (from the Greek word for discovery) are decision rules governing how a problem should be solved. Usually, heuristics are developed on the basis of a solid, rigorous analysis of the problem, sometimes involving carefully designed experimentation. In contrast, guidelines are usually developed as a result of a trial-and-error experience. Some heuristics are derived from guidelines. Heuristic searches (or programming) are step-by-step procedures (like algorithms) that are repeated until a satisfactory solution is found (unlike algorithms). In practice, such a search is much faster and cheaper than a blind search, and the solutions can be very close to the best ones. In fact, problems that theoretically can be solved to optimality (but with a very long solution time) are in practice sometimes solved by heuristics, which can guarantee
PART II DECISION SUPPORT SYSTEMS

Sequence jobs through a machine
Purchase stocks
Travel
Capital investment in high-tech projects
Purchase of a house

Do the jobs that require the least time first. If a price-to-earnings ratio exceeds 10, do not buy the stock.
Do not use the freeway between 8 and 9 a.m.
Consider only projects with estimated payback periods of less than 2 years.
Buy only in a good neighborhood, but buy only in the lower price range.

a solution within a few percent of the optimal objective value. For details and advances, see Glover and Kochenberger (2001). Examples of heuristics are given in Table 4.6.

Decision-makers use heuristics or rules of thumb for many reasons, some more reasonable than others. For example, decision-makers may use a heuristic if they do not know the best way to solve a problem or if optimization techniques have not yet been developed. A decision-maker might not be able to obtain all the information necessary, or the cost of obtaining the information or developing a complex model may be too high. This was done in the Cameron and Barkley Company’s Web-based DSS for reducing inventories and improving overall service performance, described in DSS in Action 3.2; see Cohen, Kelly, and Medagli (2001).

The heuristic process can be described as developing rules to help solve complex problems (or intermediate subproblems to discover how to set up subproblems for final solution by finding the most promising paths in the search for solutions), finding ways to retrieve and interpret information on the fly, and then developing methods that lead to a computational algorithm or general solution.

Although heuristics are employed primarily for solving ill-structured problems, they can also be used to provide satisfactory solutions to certain complex, well-structured problems much more quickly and cheaply than optimization algorithms (e.g., large-scale combinatorial problems with many potential solutions to explore) (Sun et al., 1998). The main difficulty in using heuristics is that they are not as general as algorithms. Therefore, they can normally be used only for the specific situation for which they were intended. Another problem with heuristics is that they may produce a poor solution. Heuristics are often stated like algorithms. They can be step-by-step procedures for solving a problem, but there is no guarantee that an optimal solution will be found.

It is critical to realize that heuristics provide time-pressured managers and other professionals with a simple way of dealing with a complex world, producing correct or partially correct judgments more often than not. In addition, it may be inevitable that humans will adopt some way of simplifying decisions. The only drawback is that individuals frequently adopt ... heuristics without being aware of them.
(Bazerman, 2001)

Heuristic programming is the approach of using heuristics to arrive at feasible and “good enough” solutions to some complex problems. Good enough is usually in the range of 90-99.9 percent of the objective value of an optimal solution. Heuristics can be quantitative, and so can play a major role in the DSS model base, where heuristics were used to solve a complex integer programming problem. They can also be qualitative, and then can play a major role in providing knowledge to expert systems.
CHAPTER 4 MODELING AND ANALYSIS

183

METHODOLOGY

Heuristic thinking does not necessarily proceed in a direct manner. It involves searching, learning, evaluating, judging, and then re-searching, relearning, and reappraising as exploring and probing take places. The knowledge gained from success or failure at some point is fed back/to and modifies the search process. It is usually necessary either to redefine the objectives or the problem or to solve related or simplified problems before the primary one can be solved.

Tabu search heuristics (Glover and Kochenberger, 2001) are based on intelligent search strategies to reduce the search for high-quality solutions in computer problem-solving. Essentially, the method “remembers” what high-quality and low-quality solutions it has found and tries to move toward other high-quality solutions and away from the low-quality ones. The tabu search methodology has proved successful in efficiently solving many large-scale combinatorial problems (e.g., the fixed-charge transportation problem; see Sun et al., 1998). Tabu search heuristics were part of Bourjolly et al.’s (2001) method for allocating cell telephone frequencies in Canada.

Genetic algorithms (Reeves and Rowe, 2002; Sarker et al., 2002) start with a set of randomly generated solutions and recombine pairs of them at random to produce offspring (modeled on the evolution process). Only the best offspring and parents are kept to produce the next generation. Random mutations may also be introduced. Some new applications are described by Ursem, Filipic and Krink (2002) for greenhouse control, and by Borgulya (2002) for machine scheduling. Genetic algorithms are described in depth in a later chapter.

WHEN TO USE HEURISTICS

Heuristic application is appropriate in the following situations:

- The input data are inexact or limited.
- Reality is so complex that optimization models cannot be used.
- A reliable exact algorithm is not available.
- Complex problems are not economical for optimization or simulation or consume excessive computation time.
- It is possible to improve the efficiency of the optimization process (e.g., by producing good starting solutions).
- Symbolic rather than numerical processing is involved (as in expert systems).
- Quick decisions must be made and computerization is not feasible (some heuristics do not require computers).

ADVANTAGES AND LIMITATIONS OF HEURISTICS

The major advantages of heuristics are the following:

- They are simple to understand and therefore easier to implement and explain.
- They help train people to be creative and develop heuristics for other problems.
- They save formulation time.
- They save computer programming and storage requirements.
- They save computational time and thus real time in decision-making. Some problems are so complex that they can be solved only with heuristics.
- They often produce multiple acceptable solutions.
- Usually it is possible to state a theoretical or empirical measure of the solution quality (e.g., how close the solution's objective value is to an optimal one, even though the optimal value is unknown).
They can incorporate intelligence to guide the search (e.g., tabu search). Such expertise may be problem specific or based on an expert's opinions embedded in an expert system or search mechanism.

It is possible to apply efficient heuristics to models that could be solved with mathematical programming. Sometimes heuristics are the preferred method, and other times heuristic solutions are used as initial solutions for mathematical programming methods.

The primary limitations of heuristics are the following:

- An optimal solution cannot be guaranteed. Sometimes the bound on the objective value is very bad.
- There may be too many exceptions to the rules.
- Sequential decision choices may fail to anticipate the future consequences of each choice.
- The interdependencies of one part of a system can sometimes have a profound influence on the whole system.

Heuristic algorithms that function like algorithms but without a guarantee of optimality can be classified as follows (Camm and Evans, 2000):

- Construction heuristics. These methods build a feasible solution by adding components one at a time until a feasible solution is obtained. For example, in a traveling salesperson problem, always visit the next unvisited city that is closest.
- Improvement heuristics. These methods start with a feasible solution and attempt to successively improve on it. For example, in a traveling salesperson solution, attempt to swap two cities.
- Mathematical programming. This method is applied to less constrained (relaxed) models in the hope of obtaining information about an optimum to the original one. This technique is often used in integer optimization.
- Decomposition. This approach involves solving a problem in stages. In the P&G Web Chapter, the distribution problem was solved and then used in solving the product-strategy problem.
- Partitioning. This method involves dividing a problem up into smaller, solvable pieces and then reassembling the solutions to the pieces. This technique can be applied to large traveling salesperson problems. The country can be divided into four regions, each problem solved, and then the solutions connected together.

Vehicle routing has benefited from the development and use of efficient heuristics (e.g., Applegate et al., 2002; Belenguer, Martinez, and Mota, 2000; Foulds and Thachenkary, 2001; LaPorte et al., 2002; Liu and Shen, 1999; Gendreau et al., 1999), as has university course, classroom, and faculty scheduling (see Foulds and Johnson, 2000). Karaboga and Pham (1999) and Glover and Kochenberger (2001) discuss modern heuristic methods (tabu search, genetic algorithms, and simulated annealing). Also see Nance and Sargent (2002).

Simulation

To simulate means to assume the appearance of the characteristics of reality. In MSS, simulation is a technique for conducting experiments (e.g., what-if analyses) with a computer on a model of a management system.
Typically there is some randomness in the real decision-making situation. Because DSS deals with semistructured or unstructured situations, reality is complex, which may not be easily represented by optimization or other models but can often be handled by simulation. Simulation is one of the most commonly used DSS methods.

MAJOR CHARACTERISTICS OF SIMULATION

Simulation is not strictly a type of model; models generally represent reality, whereas simulation typically imitates it. In a practical sense, there are fewer simplifications of reality in simulation models than in other models. In addition, simulation is a technique for conducting experiments. Therefore, it involves testing specific values of the decision or uncontrollable variables in the model and observing the impact on the output variables. In the Opening Vignette, the DuPont decision-makers had initially chosen to purchase more rail cars, whereas an alternative involving better scheduling of the existing cars was developed, tested, found to have excess capacity, and saved money.

Simulation is a descriptive rather than a normative method. There is no automatic search for an optimal solution. Instead, a simulation model describes or predicts the characteristics of a given system under different conditions. Once the values of the characteristics are computed, the best of several alternatives can be selected. The simulation process usually repeats an experiment many, many times to obtain an estimate (and a variance) of the overall effect of certain actions. For most situations, a computer simulation is appropriate, but there are some well-known manual simulations (e.g., a city police department simulated its patrol car scheduling with a carnival game wheel).

Finally, simulation is normally used only when a problem is too complex to be treated by numerical optimization techniques. Complexity here means either that the problem cannot be formulated for optimization (e.g., because the assumptions do not hold), the formulation is too large, there are too many interactions among the variables, or the problem is stochastic in nature (exhibits risk or uncertainty). Designing and testing a new model of an automobile is extremely complex. That is one reason why General Motors utilizes simulation throughout the entire design process (see Gallagher, 2002; Gareiss, 2002; Witzerman, 2001). The success of General Motors may have prompted Daimler-Chrysler to move in this direction. By 2005, its Digital Factory, which utilizes simulation and visualization tools, will have helped to design, build, and retrofit all of its plants (see Hoffman, 2002).

ADVANTAGES OF SIMULATION

Simulation is used in MSS for the following reasons:

- The theory is fairly straightforward.
- A great amount of time compression can be attained, quickly giving the manager some feel as to the long-term (1- to 10"year) effects of many policies.
- Simulation is descriptive rather than normative. This allows the manager to pose what-if questions. Managers can use a trial-and-error approach to problem-solving and can do so faster, cheaper, more accurately, and with less risk (see the opening vignette).
- The manager can experiment to determine which decision variables and which parts of the environment are really important, and with different alternatives.
- An accurate simulation model requires an intimate knowledge of the problem, thus forcing the MSS builder to constantly interact with the manager. This is desirable for DSS development because the developer and manager both gain a
better understanding of the problem and the potential decisions available (Eldabi et al., 1999) (see the opening vignette).

- The model is built from the manager’s perspective.
- The simulation model is built for one particular problem and typically cannot solve any other problem. Thus, no generalized understanding is required of the manager; every component in the model corresponds to part of the real system.
- Simulation can handle an extremely wide variety of problem types, such as inventory and staffing, as well as higher-level managerial functions, such as long-range planning.
- Simulation generally can include the real complexities of problems; simplifications are not necessary. For example, simulation can use real probability distributions rather than approximate theoretical distributions.
- Simulation automatically produces many important performance measures.
- Simulation is often the only DSS modeling method that can readily handle relatively unstructured problems.
- There are some relatively easy-to-use (Monte Carlo) simulation packages. These include add-in spreadsheet packages (@Risk), the influence diagram software mentioned earlier, Java-based (and other Web development) packages, and the visual interactive simulation systems to be discussed shortly.

DISADVANTAGES OF SIMULATION

The primary disadvantages of simulation are the following:

- An optimal solution cannot be guaranteed, but relatively good ones are generally found.
- Simulation model construction can be a slow and costly process, although newer modeling systems are easier to use than ever.
- Solutions and inferences from a simulation study are usually not transferable to other problems because the model incorporates unique problem factors.
- Simulation is sometimes so easy to explain to managers that analytic methods are often overlooked.
- Simulation software sometimes requires special skills because of the complexity of the formal solution method.

THE METHODOLOGY OF SIMULATION

Simulation involves setting up a model of a real system and conducting repetitive experiments on it. The methodology consists of the steps shown in Figure 4.13.

PROBLEM DEFINITION

The real-world problem is examined and classified. Here we specify why a simulation approach is appropriate. The system's boundaries, environment, and other such aspects of problem clarification are handled here.

CONSTRUCTION OF THE SIMULATION MODEL

This step involves determination of the variables and their relationships, and data gathering. Often the process is described by a flowchart, and then a computer program is written.

TESTING AND VALIDATING THE MODEL

The simulation model must properly represent the system under study. Testing and validation ensure this.
DESIGN OF THE EXPERIMENT
Once the model has been proven valid, an experiment is designed. Determining how long to run the simulation is part of this step. There are two important and conflicting objectives: accuracy and cost. It is also prudent to identify typical (mean and median cases for random variables), best-case (e.g., low-cost, high-revenue), and worst-case (e.g., high-cost, low-revenue) scenarios. These help establish the ranges of the decision variables and environment in which to work and also assist in debugging the simulation model.

CONDUCTING THE EXPERIMENT
Conducting the experiment involves issues ranging from random-number generation to result presentation.

EVALUATING THE RESULTS
The results must be interpreted. In addition to standard statistical tools, sensitivity analyses can also be used.

IMPLEMENTATION
The implementation of simulation results involves the same issues as any other implementation. However, the chances of success are better because the manager is usually more involved in the simulation process than with other models. Higher levels of managerial involvement generally lead to higher levels of implementation success.

Many simulation packages are Web ready. They typically are developed along the lines of the DSS architecture shown in Figure 3.1, where a user connects to the main server through a Web browser. This server connects to optimization servers, database servers, and they in turn may connect to data warehouses, which populate the models. For example, see Pooley and Wilcox (2000) for a description of a Java-based simulation system. Also see major vendors’ Web sites.

TYPES OF SIMULATION
PROBABILISTIC SIMULATION
In probabilistic simulation, one or more of the independent variables (e.g., the demand in an inventory problem) are probabilistic. They follow certain probability distributions, which can be either discrete distributions or continuous distributions.
Discrete distributions involve a situation with a limited number of events (or variables) that can take on only a finite number of values.

Continuous distributions are situations with unlimited numbers of possible events that follow density functions, such as the normal distribution.

The two types of distributions are shown in Table 4.7. Probabilistic simulation is conducted with the aid of a technique called Monte Carlo, which was used in the opening vignette situation.

TIME-DEPENDENT VERSUS TIME-INDEPENDENT SIMULATION

Time-independent refers to a situation in which it is not important to know exactly when the event occurred. For example, we may know that the demand for a certain product is three units per day, but we do not care when during the day the item is demanded. In some situations, time may not be a factor in the simulation at all, such as in steady-state plant control design (Boswell, 1999). On the other hand, in waiting-line problems applicable to e-commerce, it is important to know the precise time of arrival (to know whether the customer will have to wait). This is a time-dependent situation.

SIMULATION SOFTWARE

There are hundreds of simulation packages for a variety of decision-making situations. Most run as Web-based systems (see Dembo et al., 2000). PC software packages include Analytica (Lumina Decision Systems, lumina.com), and the Excel add-ins Crystal Ball (Decisioneering, decisioneering.com) and @Risk (Palisade Software, palisade.com). Web-based systems include WebGPSS (GPSS, webgpss.hk-r.se), SIMUL8 (SIMUL8 Corporation, SIMUL8.com), and Silk (ThreadTec, Inc., threadtec.com).

VISUAL SIMULATION

The graphical display of computerized results, which may include animation, is one of the more successful developments in computer-human interaction and problem solving. We describe this in the next section.

OBJECT-ORIENTED SIMULATION

There have been some advances in the area of developing simulation models using the object-oriented approach (e.g., Yun and Choi, 1999). Yun and Choi (1999) describe an object-oriented simulation model for container-terminal operation analysis. Each piece of equipment at the terminal maps into an object representation in the simulation model. SIMPROCESS (CACI Products Company, caciasl.com) is an object-

TABLE 4.7 Discrete Versus Continuous Probability Distributions

<table>
<thead>
<tr>
<th>Daily Demand</th>
<th>Discrete Probability</th>
<th>Continuous Probability:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.10</td>
<td>Daily demand is normally distributed with a mean of 7 and a standard deviation of 1.2</td>
</tr>
<tr>
<td>6</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.30</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.25</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>.20</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 4 MODELING AND ANALYSIS

189

oriented process modeling tool that lets the user create a simulation model with screen-based objects. Unified modeling language (UML) is a modeling tool that was designed for object-oriented and object-based systems and applications. Since UML is object-oriented, it could be used in practice for modeling complex, real-time systems. UML is particularly well suited for modeling. A real-time system is a software system that maintains an ongoing, timely interaction with its environment; examples include many DSS and information and communication systems (Selic, 1999).

SIMULATION EXAMPLE

We show an example of a spreadsheet-based economic order quantity simulation model and a spreadsheet simulation model for evaluating a simple cash-flow problem in a Web Chapter. DSS in Action 4.7 describes a case study of applying simulation to IT network design. CACI Products Company now provides COMNET III, a simulation system specifically for analyzing these types of IT network design problems. Saltzman and Mehrotra (2001) used a simulation approach to analyze a call center. Jovanovic (2002) determines how to schedule tasks in distributed systems via simulation. This is important when managing grid computer networks. Dronzek (2001) used simulation to improve critical care in a military hospital.

He analyzed proposed changes in a health care system using simulation modeling to determine the impact of potential changes without disrupting the established process of care or disturbing staff, patients, or the facility. Credit Suisse First Boston uses an ASP simulation system to predict the risk and-reward potential of investments (see Dembo et al., 2000). General Motors (see Gallager, 2002; Gareiss, 2002; Witzerman, 2001) delays constructing physical models of automobiles until late in the design process, since simulation is cheaper and produces more accurate results in testing new products. This includes crash tests and wind tunnel tests. Witzerman (2001) describes how GM’s paint shop robots are simulated for improved performance. These tools are very effective and have led to major improvements. It now takes only 18 months to develop a new vehicle, down from 48 months. Engineering productivity is way up, as is quality. Also see Marchant (2002).

Similation is a well-established, useful method for gaining insight into complex MSS situations. However, simulation does not usually allow decision makers to see how a solution to a complex problem evolves over (compressed) time, nor can they interact with it. Simulation generally reports statistical results at the end of a set of experiments. Decision-makers are thus not an integral part of simulation development and experimentation, and their experience and judgment cannot be used directly in the study. If the simulation results do not match the intuition or judgment of the decisionmaker, a confidence gap in the use of the model occurs.

One of the most exciting developments in computer graphics is visual interactive modeling (VIM) (see DSS in Action 4.8). The technique has been used with great success for DSS in the area of operations management. Decision-makers who used VIM in
Decision support simulation software for networks and networked applications can be used to experiment with multiple what-if scenarios. Then IT can determine a best solution before making blind commitments or sinking resources into large projects without a thorough understanding of the expected outcome. Simulations help IT determine how the infrastructure would react to a given scenario, such as increased network traffic, new transport technologies, topology changes, and new prioritized applications like ERP and voice-over Internet protocol (IP). The value of a decision-support tool is its ability to deliver reliable, timely, and verifiable data about result variables, leading to confident, resourcesaving decisions-critical during initial IT system design and implementation, when trade-offs can be weighed and cost considerations examined before committing heavily to a project.

Pacific Bell, a subsidiary of SBC Communications, Inc. (SBC), collaborated with a large government agency in southern California to design a network to support more than 80,000 employees at hundreds of sites. Throughout the southern California project, SBC and the government utilized IT DecisionGuru, a modeling and simulation tool from MIL 3 Inc. (Washington, D.C).

The challenge for the SBCgovernment team was to design a network backbone to link thousands of nodes at every site into a network capable of supporting data, video, and voice and to support future growth. The design team first built a baseline model of projected "typical" network activity. Then it used its simulation software to explore the relative performance gains offered by various architecture options. This process enabled the design team to visualize all relevant network performance indicators.

After running several simulations, it was determined that a network consisting of only ATM OC-1 links would have very low utilization. While perfectly acceptable from a performance perspective, it would be very expensive. But a network with only T1 links performs poorly at a lower cost. The best solution combined the cost efficiency of T1 lines with the bandwidth of ATM links, as the simulation indicated. This middle-of-the-road strategy saved a lot of money and avoided potentially costly impacts from poor performance.

The most critical issue was the sizing of the dedicated wide area network (WAN) links. There was a trade-off between overprovisioned service, for which excess capacity would cost hundreds of thousands of dollars unnecessarily, and underprovisioning, which could cause unacceptably poor network performance. By simulating the key decision elements, the SBCgovernment team designed an efficient architecture to handle anticipated bandwidth needs at an acceptable cost. Without sacrificing service levels, the government reduced its expected WAN costs by more than 25 percent, translating into millions of dollars saved per year.

SBC also benefited in much the same way that any internal IT organization can benefit from simulation. It built credibility with business decision-makers by providing quantifiable data to support its recommendations, making government decision-makers much more comfortable that SBC could deliver the service levels it promised.

The U.S. Army Hospital in Heidelberg, Germany, used animated simulation to develop viable alternatives for their family practice clinic. The clinic was attempting to examine different staffing alternatives, determine the best patient and staff flow scheme, and increase productivity to provide sufficient capacity. An animated simulation model was developed. The current environment, as represented by the status quo model, could not provide the needed capacity of outpatient visits. Alternative models were developed, two of which were good possibilities. The two alternative models, an all-physician model (the "physician model") and a combination model with both physicians and nonphysician providers (the "combo model"), were run and compared, and neither could handle the patient load. A process change in parallel patient screening was developed to increase patient throughput and to increase capacity. Then both models could meet clinic capacity requirements, both in the newly planned clinic and in the current one. Based on the simulation, the physician and combo models were selected for the health care operation in a phased-in plan from the former to the latter.

The simulation gave the decision-makers insight into provider and support staff use rates, down time, and small but significant process improvements. The all-physician model was recommended as a short-term arrangement after considering cost, supervisory issues, and provider availability. Changes at the clinic were to take place in the near future, and phasing in the non-physician providers would take some time.

Although the physician model was selected as a short-term arrangement to meet the needs of the community and health care system, the simulation model showed that much more work and evaluation of patient wait times had to be conducted to decrease the wait for customers. Management had determined the number of physicians and staff members needed to meet patient capacity needs, the necessary size of the waiting area, the necessary provider scheduling changes, and the process changes necessary to meet the capacity requirement, patient expectations, and organizational goals via simulation. The move to the renovated area was successful and had the additional results of impaneling the beneficiaries in the community. A migration plan was adopted based on further simulation runs.

Source: Adapted from Ledlow et al. (1999).

Visual simulation is one of the most exciting dynamic VIMs. It is a very important DSS technique because simulation is a major approach in problem-solving. Visual interactive simulation (VIS) allows the end user to watch the progress of the simulation model in an animated form on graphics displays.
The basic philosophy of VIS is that decision-makers can interact with the simulated model and watch the results develop over time (see the Web demos at Orca Computer Inc., orcacomputer.com). The user can try different decision strategies online. Enhanced learning, both about the problem and about the impact of the alternatives tested, can and does occur. Decision-makers can also contribute to model validation. They will have more confidence in its use because of their own participation in its development and use. They are also in a position to use their knowledge and experience to interact with the model to explore alternative strategies. Ledlow et al. (1999) describe how the U.S. Army Hospital in Heidelberg, Germany, used animated simulation to develop viable alternatives for its family practice clinic (see DSS in Action 4.8).

Animated VIS software systems are provided by Orca Computer, Inc., GPSS/PC (Minuteman Software), and VisSim (Visual Solutions). The latest visual simulation technology is coupled with the concept of virtual reality, where an artificial world is created for a number of purposes, from training to entertainment to viewing data in an artificial landscape. For example, Harris Corp. has developed a visual interactive simulation system for the U.S. military. The system lets ground troops gain familiarity with terrain or a city so that they can very quickly orient themselves. It also is used by pilots to gain familiarity with targets by simulating attack runs. The software includes GIS coordinates. (CNN Television Report, Nov. 16, 2002.)
VISUAL INTERACTIVE MODELS AND DSS

VIM in DSS has been used in several operations management decisions. The method consists of priming a visual interactive model of a plant (or company) with its current status. The model then runs rapidly on a computer, allowing management to observe how a plant is likely to operate in the future.

Waiting-line management (queuing) is a good example of VIM. Such a DSS usually computes several measures of performance (e.g., waiting time in the system) for the various decision alternatives. Complex waiting-line problems require simulation. VIM can display the size of the waiting line as it changes during the simulation runs and can also graphically present the answers to what-if questions regarding changes in input variables.

The VIM approach can also be used in conjunction with artificial intelligence. Integration of the two techniques adds several capabilities that range from the ability to build systems graphically to learning about the dynamics of the system. High-speed parallel computers such as those made by Silicon Graphics Inc. and Hewlett-Packard make large-scale, complex, animated simulations feasible in real time (the movie Toy Story and its sequel were essentially long VIMs). The grid computing paradigm may help in large-scale simulations.

General-purpose commercial dynamic VIM software is readily available. For information about simulation software, visual and otherwise, see The IMAGE Society Inc. Web site (public.asu.edu), the Society for Computer Simulation International Web site (scs.org), and the annual software surveys at the OR/MS Today Web site (lionhrtpub.com/orms/).

4.15 QUANTITATIVE SOFTWARE PACKAGES

Some DSS tools offer several built-in subroutines for constructing quantitative models in areas such as statistics, financial analysis, accounting, and management science. These models can be activated by a single command, such as

- **MOVAVG.** This function calculates a moving average estimated forecast of a time series of data. It might be embedded in a production planning model to generate demand.
- **NPV.** This function calculates the net present value of a series of future cash flows for a given interest rate. It could be part of a make-versus-buy model.

OLAP systems are essentially a collection of optimization, simulation, statistical, and artificial intelligence packages that access large amounts of data for analysis. (For example, Oracle Financials Suite provides business intelligence and risk management applications; see Ferguson, 2002.) In addition, many DSS tools can easily interface with powerful standard quantitative stand-alone software packages. A DSS builder can increase his or her productivity by using quantitative software packages (preprogrammed models sometimes called "ready-made") rather than "reinventing the wheel." Some of these models are building blocks of other quantitative models. For example, a regression model can be part of a forecasting model that supports a linear programming planning model (as in the P&G Web Chapter and IMERYS Case Application 4.1). Thus, a complicated model can easily be integrated with many sets of data. The Lingo modeling language described earlier for optimization problems can be
designed with a SET definition section and a DATA section. The sets and data can be fed from a database, while the actual Lingo model lines do not explicitly state any dimension or data aspects. While spreadsheets have the same capability, data must be carefully inserted. For a comprehensive resource directory of these types of systems, see the ORiMS Today Web site (lionhrtpub.com/orms/). Since the Web has promoted the widespread use of modeling, optimization, simulation, and related techniques, we list a sampling of Web impacts on these areas, and vice versa, in Table 4.8.

Data mining tools are utilized for customer segmentation analysis. These tools automate much of the tedious nature of using standard optimization packages by providing convenient and powerful ways to analyze sales. These customer analytic tools are available from Cognos, Inc. (cognos.com), DigiMine Inc. (digimine.com), Hyperion Solutions Corp. (hyperion.com), IBM (ibm.com), Informatica Corp. (informatica.com), Megaputer Intelligence, Inc. (megaputer.com), Oracle Corp. (oracle.com), and Teradata (teradata.com). (See Pallatto, 2003.)

These tools are improving in capability, portability, and usability almost daily. Similar to developments in enterprise resource planning systems for operational applications, new OLAP-type ADP (Analytical Development Platforms) plug-and-develop capabilities enable developers to build sophisticated applications with a unique look, feel, and functionality in a few days or weeks. Vendors include AlphaBlox, Proclarity, and Business Objects (see Callaghan, 2003). Object models are automatically created in graphical, configurable, Web-ready components. See Eckerson (2003) and Fourer and Goux (200–) for details. Finally, Hossein Arsham (2003a, 2003b) maintains an extensive bibliography on decision-making tools and decision sciences resources.

STATISTICAL PACKAGES

Several statistical functions are built into various DSS tools, such as mean, median, variance, standard deviation, kurtosis, t-test, chi-square, various types of regression (linear, polynomial, and stepwise) correlations, forecasting, and analysis of variance. Web-based statistics packages include STATLib (lib.stat.cmu.edu), StatPages.net (statpages.net), StatPoint Internet Statistical Computing Center (sgorp.com/on-line.computing.htm), and SticiGui (stat.Berkeley.edu/-stark/SticiGui/).

Regression analysis is a powerful statistical curve-fitting technique. An example of an SPSS run that quickly analyzed a set of data appears in a Web Chapter. The run was triggered with a single click of a button, the results were clearly delineated in the report, and the report was automatically formatted. These features can readily enhance a DSS developer’s capabilities.

More power can be obtained from stand-alone statistical packages, some embedded in OLAP, which can readily interface with spreadsheets (Excel). Typical packages include SPSS and Systat (SPSS Inc., Chicago, Illinois, spss.com), Minitab (Minitab Inc., State College, Pennsylvania, minitab.com), SAS (SAS Institute Inc., Cary, North Carolina, sas.com), and TSP (TSP International, Palo Alto California, tspintl.com). StatPac Inc. (statpac.com, Minneapolis, Minnesota) includes survey analysis software in itsStatPac package. Most spreadsheets also contain sophisticated statistical functions and routines.

Statistical software is now considered more a decision-making tool than a sophisticated analytical tool in the decision-making process. It is even embedded in Web-ready data mining and OLAP tools, and so the user is unaware that sophisticated statistical methods are being used. This subtle change in the user’s focus has occurred because of the maturity of well-accepted technology and the low cost and high performance of computers. This has clearly led to a greater acceptance of statistical methodologies.
<table>
<thead>
<tr>
<th>Modeling Topic</th>
<th>Web Impacts</th>
<th>Impacts on the Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models</td>
<td>Application servers provide access to models and their solution methods in a consistent, friendly, graphical user interface</td>
<td>Describes the Internet/Web, intranet and extranet structures as networks</td>
</tr>
<tr>
<td></td>
<td>Provides for a direct mechanism to query solutions</td>
<td>Describes how to optimize Web performance-sites and message routing from site to site and bandwidth allocation</td>
</tr>
<tr>
<td></td>
<td>Provides a channel to integrate models and models with data</td>
<td>Provides a means to analyze e-commerce (transactions and other processes can be analyzed) to determine effectiveness and efficiency</td>
</tr>
<tr>
<td></td>
<td>Provides a consistent communication channel</td>
<td>Model base application servers Models to evaluate tradeoffs among service levels and types Forecasting models predict viability of hardware and software choices Forecasuag-models predict network performance and e-commerce activity</td>
</tr>
<tr>
<td></td>
<td>New programming languages and systems</td>
<td>Improved component and other hardware selection</td>
</tr>
<tr>
<td></td>
<td>Intranets and extranets influence the use of models in supply chain management, customer relationship management and revenue management</td>
<td>All of the above</td>
</tr>
<tr>
<td></td>
<td>Proliferation of model use throughout organizations-makes enterprisewide systems like SCM and CRM feasible and practical</td>
<td>Improved infrastructure design and updates</td>
</tr>
<tr>
<td></td>
<td>Access to information about models Makes models usable for e-commerce settings</td>
<td>Traveling salesman model (vehicle routing) solutions improve dynamic message routing; also improved integrated circuit and circuit board design</td>
</tr>
<tr>
<td>Mathematical Programming (</td>
<td>Access to models and solution methods implemented as Java applets and other Web development systems</td>
<td>Internet communication readily enables grid computing</td>
</tr>
<tr>
<td>Optimization)</td>
<td>Use of models by untrained managers because they are so easy to use</td>
<td>All of the above</td>
</tr>
<tr>
<td></td>
<td>Access to Web-based AI tools to suggest models and solution methods in DSS</td>
<td>Establish rules rather than optimize to determine how to structure networks and message routing Simulation of difficult, probabilistic models lead to better performance</td>
</tr>
<tr>
<td>Heuristics</td>
<td>All of the above</td>
<td>Simulation of Web traffic</td>
</tr>
<tr>
<td></td>
<td>Improved visualization and delivery of results</td>
<td>Simulation of Web site activities for better e-commerce performance</td>
</tr>
<tr>
<td></td>
<td>Distributed processing</td>
<td>All of the above</td>
</tr>
<tr>
<td>Simulation</td>
<td>Access to Web-based programming tools, AI methods, and application servers that perform model management</td>
<td>AI-based methods for model management have improved Web performance by improving the effectiveness and efficiency of the network infrastructure</td>
</tr>
<tr>
<td>Model Management Systems</td>
<td>New Web-based model management systems</td>
<td>All of the above</td>
</tr>
</tbody>
</table>
There are several hundred management science packages on the market for models ranging from inventory control to project management. Several DSS generators include optimization and simulation capabilities. Lists of representative management science packages can be found in management science publications (e.g., ORiMS Today and INFORMS OnLine, www.informs.org). Lionheart Publishing Inc. (lionhtpub.com/orms/) has software surveys on the ORiMS Web site on statistical analysis, linear programming (Fourer, 2001), simulation, decision analysis, forecasting, vehicle routing, and spreadsheet add-ins (Grossman, 2002). Newer releases have Java (or other Web server software) interfaces so they can be readily provided via Web servers and browsers. For example, Sunset Software Technology's (www.sunsetssoft.com) XA consists of Java-based linear, mixed integer, and other solvers. Related software incorporates management science and statistics methods directly into OLAP and data mining systems. Boguslavsky (2000) describes how visualization and analytical methods have been partly automated into the Web-based Spotfire.net. The system has been used to accelerate drug and gene discovery, among other things (see DSS in Action 2.18). Several Web-based systems have been designed for solving complex, multicriteria problems. These include Nimbus (see Miettinen and Makela, 2000). The ILOG software components (ilog.com/industries/ebusiness/) are available for mathematical programming, and many can be embedded in Web environments. OR-Objects (opsresearch.com/OR-Objects/) is a freeware collection of over 500 Java classes for operations research application development. More information about techniques and packages may be found at the INFORMS Web site (www.informs.org) and Michael Trick's Operations Research Page (mat.gsia.cmu.edu). The Optimization Software Guide (www.mcs.anl.gov/otc/Guide/SoftwareGuide/) and the Decision Tree for Optimization Software (plato.la.asu.edu/guide.html) are two major Web resources for optimization and optimization packages. Geoffrion and Krishnan (2001) describe several ASPs for optimization.

Fourer and Goux (2001) describe many Web-based packages and resources. For example, GIDEN (giden.iems.nwu.edu) is a Java applet that provides visual representations and solutions to network flow problems. TSPfast (home.wxs.nl/onno.waalewijn/tspfast.html) and TSPx (home.wxs.nl/onno.waalewijn/tspx.html) are Java applets that solve traveling salesperson problems. In the area of Web-based servers, the NEOS Server for Optimization (www.neos.mcs.anl.gov/neos/) is one of the most ambitious efforts. Over two dozen solvers are there (see Figure 3.1 for how this fits into a Web-based optimization package).

Win QSB (Chang, 2000) is an example of a fairly comprehensive and robust academic management science package. Lindo and Lingo (Lindo Systems Inc.), IBM's Optimization System Library (OSL), and CPLEX (CPLEX Optimization Inc.) are commercial ones. Simulation packages include GPSS (and GPSS/PC), ProModel (ProModel Corporation), SLAM (Pritsker Corporation), and SIMULA and SIMSCRIPT (CACI Products Company). Many academic packages are available directly from their authors and via the Web (see the Society for Computer Simulation International Web site, scs.org; and Pooley and Wilcox, 2000).

Revenue Management

An exciting application area for DSS modeling and tools (typically Web-based) has developed along with the service industries. Revenue management (yield management) involves models that attempt to stratify an organization's customers, estimate demands, establish prices for each category of customer, and dynamically model all.
Until a flight takes off, an airline seat is available, but once the flight leaves, the seat cannot be inventoried. Through revenue management methods, an airline might have several hundred different fares for its coach seats on a single flight. Revenue management involves creating detailed economic models and forecasts for each product. It is important to determine an appropriate price at an appropriate time for an appropriate class of customers. In essence, the crucial part of revenue management involves selling the right product in the right format to the right customer through the right channel at the right time at the right price. Another part involves knowing when to turn away a customer because a "better" (higher-paying) customer will appear with a significantly high enough probability. Many models are used in revenue management. For example, the Co-operative Desjardins Movement (Bank) in Quebec used cluster analysis (Goulet and Wishart, 1996) to classify all of its 4.2 million members to better serve them and provide appropriate products to appropriate customers. Consequently, they have been able to retain members' loyalty and capture more market share, generating more income. At the heart of revenue-management systems are forecasting models (discussed earlier), and dynamic pricing models based on economics (see Kephart, Hanson, and Greenwald, 2000).

The largest developer and user of revenue management methods was initially the airline industry (see Cross, 1997; Smith et al., 2001), but recent advances have expanded the field to a number of areas. The next "batch" of firms to adopt airlinerelated revenue management methods were in other travel-related industries, such as railroad, hotels, and rental car agencies, but revenue management eventually expanded to include broadcasting, retail manufacturing, and power generation (see Cross, 1997). And now other industries that distribute products through Internet channels have product-planning problems similar to those the airlines faced. They need models to track product visibility, adjust products to the channels, and estimate the impact on demand and revenue; that is, revenue management with dynamic pricing (see Geoffrion and Krishnan, 2001).

Tedechi (2002) describes how Saks uses price optimization, a form of revenue management, to determine the appropriate time to mark down items in the department store. Gross margins can be improved by some 10 percent. Sliwa (2003) describes the concept of price optimization—essentially revenue management. Mantrala and Rao (2001) describe a DSS that utilizes a complex model to determine order quantities and markdowns for fashion goods. This model is similar to those utilized in price optimization systems. Hicks (2000) and Harney (2003) describe further how retailers are attempting to identify their best customers. Revenue management principles can even be applied to auctions, which are big business on the Web (see Baker and Murthy, 2002). For further details on revenue management, see Lahoti (2002) and Cross (1997). See e-optimization.com (2002), Boyd (1998), Kelly (1999), and Horner (2000) for discussions of revenue management in the airline industry. Baker and Collier (1999) describe an example in the hotel industry; Oberwetter (2001) explains how it is used in the movie industry. Web-based revenue-management systems have been applied in the cargo freight arena. OptiYield-RT (www.logistics.com) is a real-time Web-based yield management system for truckload carriers. NeoYield (NeoModa1.com) handles ocean carriers in an ASP framework (see Geoffrion and Krishnan, 2001). Home Depot uses integer programming models in an Internet-based combinatorial bidding application for contracting transportation costs (see Keskincak and Tayur, 2001).

For more on revenue management, especially Web-based tools, see the Manugistics Group, Inc. (www.manugistics.com). PROS Revenue Management, Inc. (prosrn.com), Sabre Inc. (sabre.com), and Revenue Management Systems, Inc. (www.revenuemanagement.com) Web sites.
OTHER SPECIFIC DSS APPLICATIONS

The number of DSS application software products is continually increasing. A number of these are spreadsheet add-ins, such as What's Best! (linear programming, Lindo Systems Inc., Chicago, Illinois, lindo.com), Solver (linear programming, Frontline Systems Inc., Incline Village, Nevada, .frontsys.com), @Risk (simulation, Palisade Corporation, Newfield, New York, palisade.com), BrainCel (neural network, Promised Land Technologies Inc., New Haven, Connecticut, promland.com), and Evolver (genetic algorithm, Palisade Corporation) (see Grossman, 2002). Sometimes it is necessary to modify the source code of the package to fit the decision-maker's needs. Some actually produce source code from the development language specifically for Web deployment. For example, many neural network packages can produce a deployable version of their internal user-developed models in the C programming language. Finally, there are some industry-specific packages. One example is the workforce management optimization software from ORTEC International, USA, Inc. (www.ortec.com). This software handles shift scheduling with real-time control. Results are displayed graphically.

4.16 MODEL BASE MANAGEMENT

In theory, a model base management system (MBMS) is a software package with capabilities similar to those of a DBMS. There are dozens of commercial DBMS packages, but unfortunately there are no comprehensive model base management packages on the market. However, there are commonalities between the two, and thus ideas from DBMS have been applied in model management (see Tsai, 2001). Limited MBMS capabilities are provided by some spreadsheets and other model-based DSS tools and languages. There are no standardized MBMS for a number of reasons:

• While there are standard model classes (like standard database structures: relational, hierarchical, network, object-oriented), there are far too many of them, and each is structured differently (e.g., linear programming vs. regression analysis).
• Given a problem, several different classes of models and techniques may apply. Sometimes trial and error is the only way to determine which work best.
• Each model class may have several approaches for solving problems in the class, depending on problem structure, size, shape, and data. For example, any linear programming problem can be solved by the simplex method, but there is also the interior point method. Method specializations can work better than the standard methods if they match the model.
• Every organization uses models somewhat differently.
• MBMS capabilities (e.g., selecting which model to use, how to solve it, and what parameter values to use) require expertise and reasoning capabilities, which can be made available in expert systems and other artificial intelligence approaches.

Eom (1999) indicates that model management research includes several topics, such as model base structure and representation, the structured modeling approach, model base processing, model integration, and application of artificial intelligence to model integration, construction, and interpretation. It is critical to develop notions of
how to apply artificial intelligence to MBMS. Dolk (2000) discusses how model management and data warehouses can and should be integrated. Wu (200) describes a model management system for test construction DSS. And Huh (2000) describes how collaborative model management can be done.

An effective model base management system makes the structural and algorithmic aspects of model organization and associated data-processing transparent to users of the MBMS (e.g., the P&G Web Chapter, and IMERSYS Case Application 4.1) (Orman, 1998). Web capabilities are a must for an effective MBMS. The MBMS should also handle model integration (model-to-model integration, like a forecasting model feeding a planning model; data-to-model integration; and vice versa).

Some desirable MBMS capabilities include the following:

"Control. The DSS user should be provided with a spectrum of control. The system should support both fully automated and manual model selection, depending on which seems most helpful for an intended application. The user should also be able to use subjective information."

"Flexibility. The DSS user should be able to develop part of the solution using one approach and then be able to switch to another modeling approach if desired. " Feedback. The MBMS should provide sufficient feedback to enable the user to know the state of the problem-solving process at any time."

"Interface. The DSS user should feel comfortable with the specific model from the MBMS in use. The user should not have to laboriously supply inputs."

"Redundancy reduction. Sharing models and eliminating redundant storage, as in a data warehouse, can accomplish this."

"Increased consistency. This can occur when decision-makers share the same model and data (designed into the IMERSYS DSS)."

To provide these capabilities, it appears that an MBMS design must allow the DSS user to:

- Access and retrieve existing models
- Exercise and manipulate existing models, including model instantiation, model selection, model synthesis, and the provision of suitable model outputs
- Store existing models, including model representation, model abstraction, and physical and logical model storage.
- Maintain existing models as appropriate for changing conditions
- Maintain standard cases for models as appropriate for changing conditions
- Construct new models with reasonable effort when they are needed, usually by building new models using existing models as building blocks.

There are a number of additional requirements for these capabilities. For example, there must be appropriate communication and data changes among models that have been combined. In addition, there must be a standard method for analyzing and interpreting the results obtained from using a model. This can be accomplished in a number of ways (e.g., by OLAP or expert systems).

As a result of required e-commerce and Internet speeds, accurate models must be developed faster. Data must be ready to load them, and decisions based on solution results should be implemented quickly. We must use high-level modeling languages and tools in the modern business environment. Risk goes up because even the most successful models require major refining, and some are never accurate enough to
deploy. *Model petrification* refers to an organization's loss of understanding of models after the development team leaves. As with any MIS, the understanding of models utilized in practice must be maintained to obtain the full benefits of them. Models, like any code, must be documented and responsibility passed on. See Smith, Gunther, and Ratliff (2001).

Model management is quickly moving to the Web in the ASP (application service provider) format. LogicTools (logic-tools.com), MultiSimplex (multisimplex.com) (watch the online demo), and the Web-based Model Management System-MMM (meta-mmm.wiwi.hu-berlin.de) are three examples. Dotti et al. (2000) describe a Web architecture for metaheuristics.

The MBMS does directly influence the capability of a DSS to support decisionmaker. For example, in an experimental study, Chung (2000) determined that the adequacy of the modeling support provided by a MBMS influences the decision-maker's problem-solving performance and behavior. Decision-makers who receive adequate modeling support from MBMS outperformed those without such support. Also, the MBMS helped turn the decision-makers' perception of problem-solving from a number-crunching task into the development of solution strategies, consequently changing their decision-making behavior. This is important as OLAP and data mining tools attempt to improve decision-making (see the next chapter).

MODELING LANGUAGES

There are a number of specialized modeling languages that act as front ends to the software that actually performs optimization or simulation. They essentially front-end the working or algorithmic code and assist the manager in developing and managing models. Some popular mathematical programming modeling languages include Lingo, AMPL, and GAMS.

RELATIONAL MODEL BASE MANAGEMENT SYSTEM

As is the case with a relational view of data, in a relational model base management system (RMBMS) a model is viewed as a virtual file or virtual relation. Three operations are needed for relational completeness in model management: execution, optimization, and sensitivity analysis. Web interfaces are instrumental in model access. Web application servers provide smooth access to models, data to populate the models, and solution methods. Essentially, they perform model management. Typically, the architecture shown in Figure 3.1 is used in practice. A modern, effective DSS can be developed with Web components.

OBJECT-ORIENTED MODEL BASE AND ITS MANAGEMENT

Using an object-oriented DBMS construct, it is possible to build an object-oriented model base management system (OOMBS) that maintains logical independence between the model base and the other DSS components, facilitating intelligent and stabilized integration of the components. Essentially, all the object-oriented concepts embedded in the GUI can apply to model management. As was described for a relational model management system, Web application servers are utilized similarly for object-oriented model base management systems. Du (2001) developed an object-oriented paradigm to develop an evolutional vehicle routing system. He used a component assembly model.
MODELS FOR DATABASE AND MIS DESIGN AND THEIR MANAGEMENT

Models describing efficient database and MIS design are useful in that the deployed systems will function optimally. These models include data diagrams and entity-relationship diagrams, which are managed by computer-aided systems engineering (CASE). They graphically portray how data are organized and flow in a database design and work much like the situation described in the opening vignette. A model is developed to describe and evaluate an untried alternative. Then, when the decision is implemented, the real system behaves as if the decision-makers have had many years of experience in running the new system with the implemented alternative. Thus, the model building and evaluation are training tools for the DSS team members.

- **CHAPTER HIGHLIGHTS**
 - Models play a major role in DSS. There are several types of models.
 - Models can be either static (a single snapshot of a situation) or dynamic (multiperiod).
 - Analysis is conducted under assumed certainty (most desirable), risk, or uncertainty (least desirable).
 - Influence diagrams graphically show the interrelationships of a model. They can be used to enhance the presentation of spreadsheet technology.
 - Influence diagram software can also generate and solve the model.
 - Spreadsheets have many capabilities, including what-if analysis, goal seeking, programming, database management, optimization, and simulation.
 - Decision tables and decision trees can model and solve simple decision-making problems.
 - Mathematical programming is an important optimization method.
 - Linear programming is the most common mathematical programming method. It attempts to find an optimal allocation of limited resources under organizational constraints.
 - The major parts of a linear programming model are the objective function, the decision variables, and the constraints.
 - Multiple criteria decision-making problems are difficult but not impossible to solve.
 - The Analytic Hierarchy Process (e.g., Expert Choice software) is a leading method for solving multicriteria decision-making problems.
 - What-if and goal seeking approaches are the two most common methods of sensitivity analysis.

- **Heuristic programming involves problem-solving using general rules or intelligent search.**
- **Simulation is a widely used DSS approach involving experimentation with a model that represents the real decision-making situation.**
- **Simulation can deal with more complex situations than optimization, but it does not guarantee an optimal solution.**
- **Visual interactive simulation (VIS) allows a decision-maker to interact directly with the model.**
- **VIS can show simulation results in an easily understood manner.**
- **Visual interactive modeling (VIM) is an implementation of the graphical user interface (QUI). It is usually combined with simulation and animation.**
- **Many DSS development tools include built-in quantitative models (financial, statistical) or can easily interface with such models.**
- **Model base management systems perform tasks analogous to those performed by DBMS.**
- **Unlike DBMS, there are no standard MBMS because of the many classes of models, their use, and the many techniques for solving them.**
- **Artificial intelligence techniques can be effectively used in MBMS.**
- **Models are useful for creating information systems.**
- **The Web has had a profound impact on models and model management systems, and vice versa.**
- **Web application servers provide model management capabilities to DSS.**

- **Key Words**
 - business intelligence
 - certainty
 - complexity
 - decision analysis
 - decision table
 - decision tree
 - dynamic models
 - environmental scanning and analysis
PART II DECISION SUPPORT SYSTEMS

- forecasting
- genetic algorithms
- goal-seeking analysis
- heuristic programming
- heuristics
- independent variables
- influence diagram
- linear programming (LP)
- mathematical (quantitative) model
- mathematical programming
- model base management system (MBMS)
- multidimensional modeling
- multiple goals
- object-oriented model base management system (OOMBMS)
- optimal solution
- parameters
- quantitative software packages
- regression analysis
- relational model base management system (RMBMS)
- result (outcome) variable
- risk
- risk analysis
- sensitivity analysis
- simulation
- static models
- tabu search
- uncertainty
- uncontrollable variables
- visual interactive modeling (VIM)
- visual interactive simulation (VIS)
- what-if analysis

..: QUESTIONS FOR REVIEW

1. What are the major types of models used in DSS?
2. Distinguish between a static model and a dynamic model. Give an example of each.
3. What is an influence diagram? What is it used for?
4. What is a spreadsheet?
5. What makes a spreadsheet so conducive to the development of DSS?
6. What is a decision table?
7. What is a decision tree?
8. What is an allocation problem?
9. List and briefly discuss the three major components of linear programming.
10. What is the role of heuristics in modeling?
11. Define visual simulation and compare it to conventional simulation;
12. Define visual interactive modeling (VIM).
13. What is a model base management system?
14. Explain why the development of a generic model base management system is so difficult.

..: QUESTIONS FOR DISCUSSION

1. What is the relationship between environmental analysis and problem identification?
2. What is the difference between an optimistic approach and a pessimistic approach to decisionmaking under assumed uncertainty?
3. Explain why solving problems under uncertainty sometimes involves assuming that the problem is to be solved under conditions of risk.
4. Explain the differences between static and dynamic models. How can one evolve into the other?
5. Explain why an influence diagram can be viewed as a model of a model.
6. Excel is probably the most popular spreadsheet software for the PC. Why? What can you do with this package that makes it so attractive?
7. Explain how OLAP provides access to powerful models in a spreadsheet structure.
8. What is the difference between decision analysis with a single goal and decision analysis with multiple goals (criteria)?
9. Explain how linear programming can solve allocation problems.
10. What are the advantages of using a spreadsheet package to create and solve linear programming models? What are the disadvantages?
11. What are the advantages of using a linear programming package to create and solve linear programming models? What are the disadvantages?
12. Give examples of three heuristics with which you are familiar.
13. Describe the general process of simulation.
14. List some of the major advantages of simulation over optimization, and vice versa.
15. What are the advantages of using a spreadsheet package to perform simulation studies? What are the disadvantages?
16. Compare the methodology of simulation to Simon's four-phase model of decision making. Does the methodology of simulation map directly into Simon's model? Explain.
17. Many computer games can be considered visual simulation. Explain why.
18. Explain why VIM is particularly helpful in implementing recommendations derived by computers.
19. Compare the linear programming features available in spreadsheets (e.g., Excel Solver) to those in quantitative software packages (e.g., Lindo).

20. There are hundreds of DBMS packages on the market. Explain why there are no packages for model base management systems (MBMS).

Exercises

1. Create the spreadsheet models shown in Figures 4.3 and 4.4.
 a. What is the effect of a change in the interest rate from 8 percent to 10 percent in the spreadsheet model shown in Figure 4.4?
 b. For the original model in Figure 4.4, what interest rate is required to decrease the monthly payments by 20 percent? What change in the loan amount would have the same effect?
 c. In the spreadsheet shown in Figure 4.5, what is the effect of a prepayment of $200 per month? What prepayment would be necessary to payoff the loan in 25 years instead of 30 years?

2. Class exercise. Build a predictive model. Everyone in the class should write their weight, height, and gender on a piece of paper (no names please!). If the sample is too small (you will need about 20-30 students), add more students from another class.
 a. Create a regression (causal) model for height versus weight for the whole class, and one for each gender. If possible, use a statistical package like SPSS and a spreadsheet (Excel) and compare their ease of use. Produce a scatterplot of the three sets of data.
 b. Do the relationships appear linear (based on the plots and the regressions)? How accurate were the models (how close to 1 is the value of R²)?
 c. Does weight cause height, does height cause weight, or does neither really cause the other? Explain.
 d. How can a regression model like this be used in building or aircraft design? Diet or nutrition selection? A longitudinal study (say, over 50 years) to determine whether students are getting heavier and not taller, or vice versa?

3. It has been argued in a number of different venues that a higher education level indicates a greater average income. The real question for a college student might be: should I stay in school?
 a. Using publicly available U.S. Census data for the 50 states and Washington, D.C., develop a linear regression model (causal forecasting) to see whether this relationship is true. (Note that some data massaging may be necessary.) How high was the R² value (a measure of quality of fit)? Don't forget to scatterplot the data.
 b. Does the relationship appear to be linear? If not, check a statistics book and try a nonlinear function. How well does the nonlinear function perform?
 c. Which five states have the highest average incomes, and which five states have the highest average education levels? From this study, do you believe that a higher average education level tends to "cause" a higher average income? Explain.
 d. If you have studied (or will study) neural networks, using the same data, build a neural network prediction model and compare it to your statistical results.

4. Set up spreadsheet models for the decision table models of Section 4.7 and solve them.

5. Solve the MBI product-mix problem described in the chapter (use either Excel’s Solver or a student version of a linear programming solver such as Lindo or Win QSB. Lindo is available from Lindo Systems, Inc., at linda.com; others are also available—search the Web. Examine the solution (output) reports for the answers and sensitivity report. Did you get the same results as those reported in this chapter? Try the sensitivity analysis outlined in the chapter; that is, lower the right-hand side of the CC-S marketing constraint by one unit from 200 to 199. What happens to the solution when you solve this modified problem? Eliminate the CCS lower bound constraint entirely (this can be done easily by either deleting it in Solver or setting the lower limit to zero) and re-solve the problem. What happens? Using the original formulation, try modifying the objective function coefficients and see what happens.

6. Assume that you know that there is one irregular coin (either lighter or heavier) among 12. Using a two-pan scale, you must find that coin (is it lighter or heavier?) in no more than three tests. Solve this problem and explain the weighing strategy that you use. What approach to problem-solving is used in this case?

7. Use a roadmap of the United States (or your own country). Starting from where you are now, identify a
location on the other side and plot out a route to go from here to there. What (heuristic) rules did you use in selecting your route? Did you identify a shortest route or a fastest route? Explain why. How does your route compare to published distances (if available) between the locations?

8. Use Expert Choice software to select your next car. Evaluate cars on ride (from poor to great), looks (from attractive to ugly), and acceleration (seconds from 0 to 60 mph; 100 kph). Consider three final cars on your list and develop each of the items in parts (a)-(e).
 a. A problem hierarchy
 b. A comparison of the importance of the criteria against the goal
 c. A comparison of the alternative cars for each criterion
 d. An overall ranking (a synthesis of leaf nodes with respect to the goal)
 e. A sensitivity analysis
 f. Maintain the inconsistency ratio lower than 0.1. If you initially had an inconsistency index greater than 0.1, what caused it to be that high? Would you really buy the car you selected? Why or why not?
 g. Develop a spreadsheet model using estimated preference weights and estimates for the intangible items, each on a scale from 1 to 10 for each car. Compare the conclusions reached with this method to those found using the Expert Choice model. Which one more accurately captures your judgments and why?

9. Build an Expert Choice model to select the next president of the United States (if it is not an election year or you do not live in the United States, use a relevant election). Whom did you choose? Did your solution match your expectations?

10. **Job Selection using Expert Choice.** You are in the job market (use your imagination if necessary). List the names of four or five different companies that have offered you a job (or from which you expect to get an offer). (As an alternative, your instructor may assign graduate or undergraduate program selection.) Write down all the factors that may influence your decision as to which job offer you will accept. Such factors may include geographic location, salary, benefits, taxes, school system (if you have children), and potential for career advancement. Some of these factors (criteria, attributes) may have subcriteria. For instance, location may be subdivided into climate, urban concentration, cost of living, arid so on. If you do not yet have a salary figure associated with a job offer, guess a reasonable figure. Perhaps your classmates can help you determine realistic figures.
 a. Model this problem in a spreadsheet (Excel) using some kind of weighted average methodology (you set the criteria weights first) (see the current *Rand McNally Places Rated Almanac* for an example).
 b. Construct an Expert Choice model for your decision problem and use the pairwise comparisons to arrive at the best job opportunity.
 c. Compare the two approaches. Do they yield the same results? Why or why not?
 d. Write a short report (one or two typed pages) explaining the results, including those of the weighted average methodology, and for Expert Choice, explain each criterion, subcriterion (if any), and alternative. Describe briefly which options and capabilities of Expert Choice you used in your analysis and show the numerical results of your analysis. For this purpose, you may want to include printouts of your AHP tree, but make sure you circle and explain the items of interest on the printouts. Discuss the nature of the trade-offs you encountered during the evaluation process. You may want to include a meaningful sensitivity analysis of the results (optional).
 e. **To think about:** Was the Expert Choice analysis helpful in structuring your preferences? Do you think it will be a helpful aid in your actual decision-making process? Comment on all these issues in your report.

11. For the last few multicriteria decision making exercises, set each up and solve it using Web-Hipre (hipre.hut.fi, Systems Analysis Laboratory, Helsinki University of Technology, Helsinki, Finland), a Web-enabled implementation of the Analytic Hierarchy Process. How does Web-Hipre compare to Expert Choice in functionality and use?

12. **Heuristic study: the traveling salesperson problem.** On a map of the United States mark all the state capitals in the continental United States (exclude Hawaii and Alaska but include Washington, DC). Starting from any state capital, identify the paths you would follow to visit each of the cities exactly once with a return to the starting capital while attempting to minimize the total distance traveled. How can you do this? What would you do differently if you were allowed to visit each city more than once. If you can find the distances in a table (e.g., on a roadmap of the United States), try to do the same using the 49 by 49 entry table. How hard is it to get the data and organize it? Can you eliminate some data? If so, how or why? If not, why not? Which approach is easier? Do you appreciate the graphic approach more? What does this tell you in terms of developing DSS models for managers?
GROUP PROJECTS

1. Software demonstration. Each group is assigned a different state-of-the-art DSs software product to review, examine, and demonstrate in class. The specific packages depend on your instructor and the group interests. You may need to download the demo from vendors' Web site, depending on your instructor's directions. Be sure to get a running demo version, not a slide show. Do a half-hour in-class presentation, which should include an explanation of why the software is appropriate for assisting in decisionmaking, a hands-on demonstration of selected important capabilities of the software, and a critical evaluation of the software. Try to make your presentation interesting and instructive to the whole class. The main purpose of the class presentation is for class members to see as much state-of-the-art software as possible, both in breadth (through the presentations by other groups) and in depth (through the experience you have in exploring the ins and outs of one particular software product). Write a report (5-10 pages) on your findings and comments regarding this software. Include screen shots in your report. Would you recommend this software to anyone? Why or why not?

2. Expert Choice software familiarity. Have a group meeting and discuss how you chose a place to live when you relocated to start your college program (or relocated to where you are now). What factors were important for each individual then, and how long ago was it? Have the criteria changed? As a group, identify the five to seven most important criteria used in making the decision. Using the current group members' living arrangements as choices, develop an Expert Choice model describing this decision-making problem. Do not put your judgments in yet. You should each solve the EC model independently. Be careful to keep the inconsistency ratio less than 0.1. How many of the group members selected their current home using the software? If so, was it a close decision, or was there a clear winner? If some group members did not choose their current homes, what criteria made the result different (spouses of group members are not part of the home)? Did the availability of better choices that meet their needs become known? How consistent were your judgments? Do you think that you would really prefer to live in the winning location? Why or why not? Finally, average the results for all group members (by adding up the synthesized weights for each choice and dividing by the number of group members). This is one way TeamEC works. Is there a clear winner? Whose home is it and why did it win? Were there any close second choices? Turn in your results in a summary report (up to two typed pages), with copies of the individual Expert Choice runs.

MAJOR GROUP TERM PROJECT 1

Identify a decision-making problem in a real organization and apply the Analytic Hierarchy Process Method via Expert Choice software to it. Find a business or organization, preferably one where you (or someone in your group) are working, used to work, or know an employee or owner. Otherwise, you might consider campus organizations or departments with which you are affiliated. Essentially, you need a contact willing to spend a little time with your group. The problem should involve clear choices (you may need to identify these) and some intangible aspects (not all factors should be strictly quantitative). You will have to spend some time learning about the problem at hand. Interview the decision-maker, identify important criteria and choices, and build an Expert Choice model. Try your judgments in solving the problem with the prototype (record the results), and then use the expert's (decision-maker's) judgments. Get the expert's opinion of how the software helped or hindered the decision-making process. This project has worked very well in practice: students and decision-makers have expressed the opinion that they were very satisfied with the activities and results (see the Scott Homes Web Chapter for an example of a term project like this one).

The four deliverables are as follows:

1. One-page proposal. Turn in a one-page proposal describing the Expert Choice project you intend to do. Indicate the project title, the client, and the expected results. This proposal should be due no later than five weeks before the final due date for the project.

2. Intermediate progress report (maximum-two pages typed). In this short report, describe the nature of your application and indicate how far along you are. Experience shows that you may be in trouble if you wait too long to work on
this group project, so start working seriously on it as soon as you can. The short report should be due three weeks before the final due date for the project. Your instructor may require additional intermediate progress reports.

3. and 4. Final project presentation and report (maximum 10 typed pages excluding appendices with screen shots). This report must include a letter (on a letterhead) from the client indicating his or her opinion of the project and interaction with your group (two sentences are sufficient). Will the client use the method or the software? Does the client believe the choice? Why or why not? Can the client save money by implementing the suggestion? Does the client obtain other benefits by doing so? How closely does the suggestion match what the client is doing (or wants to do)? What, if any, were the limitations imposed by the software? How did they affect your ability to do the project? What was the most difficult part of working on the project? The group presentations (20 minutes per group) should be scheduled during the last week of the course, with the report due at the same time.

MAJOR GROUP TERM PROJECT 2

With the outline provided for the first project, use a decision support methodology and a software package that your instructor provides or recommends.

MAJOR GROUP TERM PROJECT 3

Develop a real-world DSS that links a database to a transportation (or other type of linear programming) model through a user interface (Lingo and Microsoft Access are recommended, as are Excel with Solver and Access). The database should contain raw data about the potential transportation routes, along with supply and demand points. The database should also handle the user interface and provide managerially meaningful descriptions of the routes after the optimization system is called. There is a Web Chapter that describes this project.

INTERNET EXERCISES

1. Search the Internet and identify software packages for linear programming, simulation, inventory control, project management, statistics, forecasting, and financial modeling. What types of organizations provide these packages? Are any free?
2. Investigate ProModel (or a similar simulation package) on the Web. What features do you think DuPont used in its modeling and analysis (as discussed in the opening vignette)? Download the demo version and implement the cash flow simulation model in the Web Chapter. How does it compare to the Excel version?
3. Repeat Exercise 2 using @Risk.
4. Search the Web for the newest software packages and books on DSS modeling. What appears to be the major focus of each? Prepare a short report.
5. Do a Web search to identify companies and products for decision analysis. Find at least one demo package, download it (or try it online if possible), and write a report on your experience.
6. Use the Internet to obtain demo software from management science or statistics vendors (try the SAS Institute Inc., SPSS Inc., CACI Products Company, and Lindo Systems Inc.). Also, be sure to look for shareware (fully functional packages that can be tried for a limited time for free). Try some of the packages and write a report on your findings.
7. Identify a company involved in animation or visual interactive simulation over the Web. Are any of the products Web-ready? Do any of them provide virtual reality capabilities or real-time online simulations? Do any of them utilize holographic 3-D imaging, virtual reality capabilities, or real-time online simulations? Try one if you can and write a brief report on your experiences.
Term Paper
Select a current DSS technology or methodology. Get your instructor's approval. Write a report detailing the origins of the technology, what need prompted development of the technology, and what the future holds for it over the next two, five, or ten years (the number of pages is up to your instructor). Use electronic sources, if possible, to identify companies providing the technology. If demo software is available, acquire it and include the results of a sample run in your paper.
CLAY PROCESS PLANNING AT IMERYS: A CLASSICAL CASE OF DECISION MAKING

Part 3: The Process Optimization Model

INTRODUCTION

This case application continues the effort described in Case Applications 2.1 and 2.2. The Process OPtimization (POP) development team at English China Clay International (ECCI, which became IMERYS) in Sandersville, Georgia, developed a large-scale mathematical programming model that describes its clay processing operation from the mines to the finished product. Here we describe the structure of the POP model: a large-scale, generalized, multicommodity network flow model with side constraints. We further describe how the data and model are managed. Finally, we describe how the model is and will be used. The prototyping development process followed in developing the POP DSS is described in detail in Case Application 6.1.

THE PLANTS

The scope of the first phase of the project originally called for developing an integrated model representing four plants—two hydrous plants, a large calcine plant, and a small calcine plant—but did not represent the mines (calcine is dry clay, and hydrous has more moisture; different products are made from each, and almost any set of clays can be blended to generate a final product with unique properties). The mining portion of the model was added later. While development of the model for the small calcine plant was underway, ECCI was purchased by IMATEL (France), and eventually one hydrous plant, about one-fifth of the large calcine plant, and the small calcine plant were sold per a U.S. Justice Department ruling. As outlined in Case Application 6.1, we had completed development of the model of both calcine plants at that time. For validation purposes, we kept the plants in the model until it became operational. The POP DSS model deployed in late 1999 represented one hydrous plant, the large calcine plant, and the small calcine plant. Later, we replaced the small plant with external market purchases and demands for intermediate clays that were shipped to it.

THE MODEL BUILDING BLOCKS

The decision variables include which mines to excavate, how much and what kind of crude clays to extract from each one, how to blend crude clays, which equipment to process the clay on, the speed at which to process the clay, what intermediate blends (recipes) to use, what final blends to use, what demands to meet (or not meet if necessary), what final clays to purchase from the open market, and so on.

Fortunately, the multicommodity network flow problem represents flow problems of many commodities (e.g., different clays) through common links (arcs) that generally have capacity limits. The model can be represented graphically, making it easy to sketch and understand. Ours is a generalized model; that is, each link that allows flow has a multiplier (a recovery factor for a process) between 0 and 1 indicating how much of the flow actually reaches the node at the end of the link. This is used to model losses that result from chemical and physical transformation of the clays. In addition, there are some side constraints that enforce blends and enforce mutual capacities on the links (e.g., the total flow through each arc for all commodities cannot exceed the capacity in terms of flow or time). This is a static model.

Developing a standard set of building blocks made it easier for the team to develop and implement the model. Given a particular clay, there are several model building blocks, but the most important one is the process. These are entities that represent a type of equipment processing the clay. For example, transporting the clay from a mine to a particular plant is a process. Another process is grinding. Other building blocks, such as a holding tank, follow naturally from the process definition. Some processes are simply represented as a pair of nodes: a source (a supply, e.g., a mine), a sink (the demand for a finished clay), and a link that allows flow between pairs of building blocks. Every process has a set of clays that can flow through it. For each clay flowing through a process, the following data must be specified: the rate of flow (in tons per hour, which varies by clay), a unit cost per hour utilized, a recovery factor (the multiplier between 0 and 1), a capacity limit on the flow, and a capacity limit on the processing time.

The basic building block of a simple process consists of two nodes and a single arc. The first node is the feed node. Any preceding processes can feed the clay into the process through this node. The second node is the product node. This is where the processed clay arrives and is ready for transport to its next destination. The decision variable is to determine the flow through the process (on the arc). A simple process looks like
Complex processes have two or more distinct products (e.g., a categorizing process divides clay into small and large particle sizes, each of which is processed differently afterward; so each product has a different recovery factor, while the rate and unit costs of processing are unchanged. A complex process has an intermediate node (the process set node), a product node for each one, and arcs to link them. It looks like

![Diagram of a complex process flowchart](Image)

Chemicals that alter the clays' properties are added to the clays in different processes. The amount used is proportional to the flow (in pounds per ton), and, depending on the rate the process uses, different chemical amounts can be involved. Alternative processing for the same clay may lead to the use of different chemicals.

Clays can flow from plant to plant, from the economy into the plant, from mine to plant, and so on. The model is then built by connecting these processes with arcs that transport the clays. These arcs represent any transporting of clays. There are about 15 crude clays, five families of hydrous clays, and three main calcine products. Though few in number, these clays can be combined with each other and with clays obtained from other plants or on the open market to produce several hundred different final clays. There are hundreds of ways to blend the crude clays. Each family goes through the production process in several different ways. There are different ways to process each particular clay, and different blends and chemical amounts can be used. The model was to determine the optimal blends to use.

The model, when solved, determines the clay flows (decision variables, in tons) and the time consumed for each clay in each process. These values are capacitated, and the total flow and total time consumed are also capacitated, both because of physical limitations of the process equipment and the required characteristics of the finished products. The recipes used and which processes are running at capacity are of great interest to the company for planning purposes. The mining operations are also a "process," as is meeting the demand for each clay.

The objective is to maximize profit. Each finished product clay has a unit price for every form of it that is sold (slurry, bulk, bag, etc.). More than 2.3 million tons of crude clay processing annually was modeled.

MODELING DIFFICULTIES

What made this model difficult to construct and interesting was the large size (initially more than 8,000 constraints and 35,000 variables; by 2003 there were over 80,000 constraints and 170,000 variables) and the fact that several different process characteristics were estimated because the processes had not yet been constructed. There were also points in the processing where by-products were fed back into the system to an earlier step (clay recoveries).

Once the small calcine plant and a portion of the large calcine plant were sold, the flows into these portions of the model were turned off by setting the capacity of the calcining process equal to zero, and open market purchases were added for some final products. A second hydrous plant was never modeled. Later, the size of the model increased by 50 percent as other plants and clays were added.

THE LINGO MODELING LANGUAGE AND THE ACCESS DATABASE INTEGRATION

The model was developed in Lingo (a modeling language from Lindo Systems Inc., lindo.com), which integrates directly with a Microsoft Access database of more than 10 relational tables through the Microsoft @ODBC interface. The Lingo model lines are specified independently from the data link statements (links). The Process OPtimization Lingo model is populated with data from the database, generates the model, solves it, and loads the solution directly back into the database automatically. Lingo model lines generally look like shorthand for the algebra of mathematical programming, thus providing a familiar vehicle for model building. For example, the Lingo model line for the supply constraints of a transportation problem (from factories to customers) might be

\[
@FOR(FACTORY(I):
@SUM(CUSTOMER(J): FLOW(I, J)) <= CAPACITY(I);
\]

which means: For every FACTORY(I), SUM all the flows from supply node I to demand node J over all CUSTOMER(J) (all customers), {FLOW(I,J)}, and set that value to be less than or equal to the available CAPACITY(I) at FACTORY(I). There are special data statements.
specifying all necessary data to identify the sets FACTORY, CUSTOMER, and CAPACITY. The POP model's mining portion looks very much like a modified transportation problem. Limits on blends can be specified (e.g., clay B must constitute between 80 and 95 percent of the blend).

POP DSS USE

The DSS, written as a menu-oriented Access database table, manages the data in the system. A particular scenario is set up in the Access tables, through a friendly graphical user interface (GUI) screen. The user sets the demands, makes other adjustments to the processes, and then activates Lingo with the click of a button. Lingo automatically generates the entire model from its compact representation and the data as specified in the database, and solves it. Lingo loads its solution back into the database and returns control to the menu-oriented GUI. Access programs then produce managerially meaningful graphs of utilization and reports on clay extraction and processing. Trouble spots are identified, the case can be saved, and another scenario can be run.

For a fixed time period (one year, one quarter, two weeks, etc.), the solution to the model indicates which mines are active, how much clay is mined from each mine, to which processing unit the clay is shipped from the mines, and the appropriate crude blends (recipes) to be used. It determines all the clay flows throughout the entire system and which clays to purchase from the market. The model quickly identifies which processes are running at capacity and indicates the potential increase in profit that could be obtained if these capacities could be increased (through sensitivity analysis). Sometimes there are underutilized processes that could handle some of the load of the limited processes but are somewhat inefficient at doing so. Plant managers are reluctant to use these processes but carefully examine them and sometimes activate them.

The model also indicates how to handle the situation now that some of the higher-quality clay mines are depleted and new processes have been introduced. Finally, underutilization of some processes indicates that some final products, normally produced at other plants (not yet in the model), could be produced at the plants represented by the model. Several of these clays have already been added to POP.

The most interesting aspect of the model is that the engineers and managers who structure the plants were doing an excellent job of keeping them fine-tuned without access to these analytical tools. The model did recommend using different mines from time to time, and it has provided guidance on how to manage the mines for ten years. The total amount of clay being processed is about the same as what the model solution recommends, which certainly helped to validate the model. What the model is best used for is determining how to handle the resources that are 100 percent utilized (bottlenecks) and how to handle new and unexpected situations, such as new clays, new demands, and new processes. It also provides answers quickly and easily, thus guiding managers and engineers in their decision-making.

When a plant was closed in 2001, the production and demand for its products were moved to the main hydrous plant that was already in the POP DSS. POP accurately determined the blends that indicated how to handle this record throughput optimally. Even the plant manager, initially skeptical, agreed that his plant could handle the load once he saw POP's recommendations.

As mentioned in Case Application 2.2, the cost of operating a new process was determined, thus guiding budgeting decisions for the next fiscal year. The model is used for annual planning. It is also used in the short term for scheduling specific large orders in with the forecasted demands. Essentially, the POP DSS is used for strategic planning (1-5 years), tactical planning (3-6 months), and operational planning (2 weeks). A simple factor is changed to generate a model that spans any needed time frame.

SUMMARY AND CONCLUSIONS

The POP model as part of the POP DSS at IMERYS is helping to guide planning on an annual, quarterly, and even weekly basis. It helps decision-makers determine which options are most viable in terms of meeting clay demand at a maximum profit. Planning for millions of tons of clay processing is not a trivial task, and the POP DSS handles it readily and quickly, POP continues to expand to include other IMERYS plants and mines. The POP DSS is a success.

CASE QUESTIONS

1. What is the POP DSS used for?
2. What are the benefits of using a network-based model?
3. What are the benefits of the POP DSS?
4. How can what-if cases (scenarios) be used to determine whether to add extra processing equipment instead of adjusting existing processes and chemical use?
5. Could other firms that process materials use a system like this? Why or why not?

6. How could a demand forecasting model be integrated with POP? (A question to think about—not in this case application.)
7. How could the results of the POP DSS guide an enterprise resource planning (ERP) system? (A question to think about—not described in this case application.)